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In  this  work,  we discuss  different  approaches  for  dealing 
with the problems of blind source extraction (BSE) – which, 
when  chaotic  and  stochastic  signals  are  mixed,  may 
correspond to a classical  time series denoising task – and 
blind source separation (BSS). 

To explain and illustrate the BSE problem in the context of a 
denoising problem, let  us consider  that  two sources  - one 
being a chaotic signal sc(n) and the other being a stochastic 
signal ss(n) - are linearly mixed, giving rise to x(n) = As(n), 
where x(n) = [x1(n) x2(n)]T is the mixture vector, A is the 2 x 
2 mixing matrix (which is assumed to have full rank in the 
invertible scenario)  and  s(n)  =  [s1(n)  s2(n)]T is  the source 
vector.  The  aim  of  blind  source  extraction  (BSE)  is  to 
extract  a source from the mixtures without the need for a 
reference signal or knowledge of coefficients of the mixing 
matrix  [1].  This  task  can  be  achieved  by multiplying  the 
mixture vector by an adequately chosen separating vector w, 
so that the output vector yield, for instance, y(n) = wTx(n) = 
Gsc(n), where G is a scaling factor. Figure 1 shows a scheme 
that represents the described blind extraction problem.

Figure 1: Scheme for blind extraction problem, sc(n) is the chaotic 
source, ss(n) is the stochastic source, x1(n) and x2(n) are the observed 
mixtures, A is the mixing matrix, w is the separating vector and y1(n) 

the recovered chaotic signal up to scaling factor G.

Moreover,  let  us  also  assume  that  the  mixing  matrix  is 
orthogonal (which always can be achieved via a whitening 
procedure), and, as a consequence,  w can be parameterized 
in  terms  of  a  single  variable  θ,  i.e.,  w   =  [cosθ sinθ]T. 

Classical  ICA  approaches  look  for  solutions  in  θ  that 
ensure, for instance, maximal nongaussianity, which can be 
evaluated  with  the  aid  of  the  kurtosis  of  the  output 
components,  or,  alternatively,  maximization  of 
independence  between  the  elements  of  the  output  vector 
y(n) = [y1(n) y2(n)]T = Wx(n) (e.g. by minimizing a mutual 
information measure), being W the separating matrix given 
by [cosθ  sinθ,  -sinθ cosθ]. It  is also important to remark 
that ICA allows the recovery of the original sources up to 
scale and permutation ambiguities [1].

However,  when it  is  known that  the original  sources  are, 
respectively,  a  deterministic  and  a  stochastic  signal,  it  is 
possible  to  obtain  the  separating  vector  based  on  the 
maximization of  the deterministic  character  of  the output, 
which  can  be  done  by  employing  a  recurrence  plot.  An 
immediate  consequence  is  that  the  permutation  ambiguity 
should  not  exist,  since  the  measure  will  establish  a 
difference between deterministic and stochastic sources.

In very simple terms, deterministic signals tend to present 
structures of diagonals in the recurrence plot related to the 
temporal and spatial correlation characteristics given by the 
time evolution of motion equations, which is not the case for 
stochastic signals. The recurrence behavior of a signal can 
be quantified by recurrence  quantification analysis  (RQA) 
using,  basically,  three  measures  [2]:  the  percentage  of 
determinism,  the  entropy  and  the  length  of  the  maximal 
diagonal  line.  These  measures  (called  fitd,  fite and  fitl, 
respectively) were used to adapt a linear separating system 
in order to extract the “most deterministic” output, which is 
associated to the chaotic source.

Figure 2 presents the values of the proposed cost function 
and also of two commonly used ICA contrasts: the kurtosis 



of y1(n) and the mutual information between y1(n) and y2(n) 
(which leaves the extraction framework and deal with BSS 
problem), evaluated with the estimator developed in [3]. It 
can  be  noted  that  the  estimators  based  on  the  recurrence 
statistics  have  global  optima  at  the  solutions  that  lead  to 
perfect  inversion  (up  to  a  sign  ambiguity)  of  the  mixing 
matrix, a feature shared by methods based on kurtosis and 
mutual  information. These results reveal  that  the proposal 
fulfilled the essential requirements to establish a separation 
method with a performance equivalent to that obtained via 
classical  ICA  methods.  In  fact,  for  lower  signal  to  noise 
ratios (SNR), e.g. 2 dB, the contrast between deterministic 
and  stochastic  sources  provided  by  RQA  measures  is 
stronger than that provided by ICA-based methods, which 
allows  a  better  extraction  performance  [4,  5].  When  the 
underdetermined scenario is considered (more sources than 
mixtures),  the  approach  using  RQA  measures  reveals  a 
better performance than ICA, something that illustrates the 
advantage  of  exploiting  a  priori information  about  the 
nature of the sources [5].

Figure 2: The upper panel shows the percentage of determinism (fitd) of
y1(n), longest diagonal fitl of y1(n) and entropy of diagonal lines fite of 
the recurrence plot for the output vector for different θ values. The 
stochastic source is a white gaussian signal 10 dB below the chaotic 

source in power. Lower panel shows the kurtosis of y1(n) - (fitk) - and 
mutual information between y1(n) and y2(n) - (fitm) - for different θ 

values. 

It  is  also  possible  to  extract  or  separate  different  chaotic 
sources using RQA measures. Figure 3 shows the RQA and 
ICA  cost  functions  for  the  output  vector  when  a  chaotic 
Lorenz and Rossler time series are mixed by  A. It  can be 
noted that the first local peak of RQA measures (that occurs 
at θ = 0.52 rad) leads to the separating vector that recovers 
the  Lorenz  time  series,  and  the  second  peak  (global 
maximum at θ = 2.09 rad) recovers the Rossler series. These 
results agree with ICA-based methodologies, for which the 
local and global maxima of kurtosis and the minimum of the 
mutual information provide the adequate separating vectors 
for the chaotic time series.
The result presented in Figure 3 is particularly interesting 
when  the  problem  of  multiuser  communication  systems 
using chaotic signals is considered, where the separation of 
several chaotic signals is a central issue, and an issue that, to 

our best knowledge,  has not been addressed before in the 
literature in the context of the use of RQA. An interesting 
perspective related to the proposal is to combine ICA and 
RQA to separate chaotic time series immersed in noise in 
order  to  obtain  a  better  separation  performance  than  that 
reached  via  methods  based  only  in  ICA,  which  seems 
restrict  to  SNRs  lower  than  5  dB  [6].  We  feel  that  this 
“deterministic component analysis” given by RQA deserves 
careful analysis.

Figure 3: The upper panel shows the percentage determinism (fitd) of
y1(n), longest diagonal fitl of y1(n) and entropy of diagonal lines fite of 

the recurrence plot of the output vector for different θ  values 
considering the mixture of two chaotic sources obtained by Lorenz and 

Rossler dynamical system. Lower panel shows the  kurtosis of y1(n) - 
(fitk) - and mutual information between y1(n) and y2(n) - (fitm) - for 

different θ values.
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