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ABSTRACT

It is common in large-scale tropical dynamics the use
of the so called long wave approximation for studies re-
lated to the El Niño and/or the Madden-Julian oscillation
([1, 2]). This approximation filters out inertia-gravity waves
of all wavelengths while being accurated for Kelvin and long
Rossby waves, however is completely inacurate for short
Rossby waves ([3]). Furthermore, the completeness of the re-
maining waves has not been proven, consequently the repre-
sentation of any phenomenon is questionable. In the present
work, asymptotic methods are used to obtain the long wave
approximation as a limiting case of the shallow water equa-
tion. The difference with previous works is that the transfor-
mation of one regime to another is controled by an external
parameter (δ ∈ [0, 1]) which is a measure of the anisotropy
of the space and time scalings. The δ → 1 limit correspond
to the shallow water equation, whereas δ → 0 is for the long
wave approximation, any value in between correspond to in-
termediate realizable states. The model equations developed
here are valid for both limiting cases and also for the interme-
diate states. The advantage of this method is that it allows a
continuous approach to the long wave equations while keep-
ing the completeness of the solutions of the Shallow water
equations. With this approach we have studied nonlinear res-
onant wave energy exchanges. It was verified in both the-
oretical an in numerical experiments that the period of the
nonlinear slow energy modulation increases as δ decreases,
some implications for the Tropical dynamics are discussed.

1. GOVERNING EQUATIONS

We start with the nonlinear shallow water equations in the
β plane in its dimensional form (Eq. 1)

∂tu+ v · ∇u− βyv + g∂xH = 0 (1a)
∂tv + v · ∇v + βyu+ g∂yH = 0 (1b)

∂tH + v · ∇H +H∇ · v = 0 (1c)

Where H = H̄ + η, H̄ is the mean thickness of the fluid
layer, η is its dilatation and βy is the equatorial Coriolis pa-
rameter. C ∈ [10, 50]m/s is the baroclinic wave speed. The
equations are nondimensionalized by taking units of length
and time as in 2.

L = (C/β)1/2 ≈ [500, 1500]km (2a)

T =
1

(Cβ)1/2
≈ [8, 18]hrs (2b)

the nondimensionalized and anisotropically scaled (δ depen-
dency) variables are obtained by doing:

x = (L/δ)x′′; y = Ly′′; t = (T/δ)t′′ (3a)

u = Cu′′; v = δCv′′;H = (C2/g)H ′′; η = η′′ (3b)

Where 0 < δ � 1, therefore the nondimensional zonal co-
ordinate x and time t is dilatated whereas v is contracted (or
equivalently x′′ and t′′ are large scale and slow time respec-
tively whereas v′′ is of a small magnitude). With substitution
(x, y, t, u, v, η)′′ → (x, y, t, u, v, η) the equations 4 are ob-
tained.

∂tu+ u∂xu+ v∂yu− yv + ∂xη = 0 (4a)

δ2[∂tv + u∂xv + v∂yv] + yu+ ∂yη = 0 (4b)
∂tη + u∂xη + v∂yη + (1 + η)(∂xu+ ∂yv) = 0 (4c)

2. SPECTRAL REPRESENTATION

With φ = (u, v, η)T the spectral representation of the de-
pendent variables and the spectral coefficients are:

φ(x, y, t) =
∑
a

φa(x, y)Za(t); (5a)

Za(t) =
∫
φ+
a (x, y)φ(x, y, t)dxdy (5b)

where φa(x, y) are the eigenfunctions of the linear operator
L defined below

(L − ωaI)φa(x, y) = 0 (6)



The asymptotic model (equation 4) can be written as:

[∂tI(δ) + L]φ+ B(φ, φ)I(δ) = 0 (7)

Where I(δ) =

1 0 0
0 δ2 0
0 0 1

;

L(φ) =

−yv + ∂xh
+yu+ ∂yh
∂xu+ ∂yv

 ;B(φ, φ) =

~v · ∇u~v · ∇v
∇(η~v)

 . (8a)

3. EVOLUTION EQUATION

Projection of equation (7) onto an arbitrary eigenmode φa
results in:

[dtI + ωaI]Za(t) = 1/2
∑
bc

δabcσ
bc
a IZ∗bZ∗c (9)

The coupling coefficient (σbca ) as a function of δ is:

δabcσ
bc
a I =

∫
φ+
a B(φ∗b , φ

∗
c)Idxdy (10)

Which is valid for resonant and non-resonant interactions.
Using ξa = −ı̂va/ωa and T bca = uaξbξc the coupling coeffi-
cient can be written as

δabcσ
bc
a I = ı̂ωaγabc + ı̂(ωa + ωb + ωc)T bca (11)

The interaction coefficient (γabc) is clearly modified by δ

γabc = δ

[
(ηa~vb · ~vc + C.P.)− T bca

δ
− δ{T cab + T abc }

]
(12)

Conditions for interaction (na + nb + nc = odd) and reso-
nance (ωa+ωb+ωc = 0; ka+kb+kc = 0). Thus the resonant
coupling coefficient shows that there is an effective reduction
of the interaction frequency as δ decreases, whereas the inter-
action strenght is also modified, increasing in absolute values
(ωa > δωa for 0 < δ < 1; limδ→0 |γabc| > limδ→1 |γabc|)

4. NUMERICS

For the numerical integration a semi-analytic method is
used, it assumes that the nonlinear terms are constant within
a 2∆t time interval. If we know the expansion coefficients
Zj ,j = a, b, c, · · · for [t, t−∆t] , it is possible to obtain ana-
lytic solutions at time t+∆t. The nonlinear terms are defined
at the central time t. Zonal and meridional dependency of the
wave components, as well as their derivatives are computed
analitically. Both, initial amplitudes (Aj(ωmax) � Ai 6=j ;
defined in eq.13) and phase relationship (Σλj = π/2) are
choosing as to maximize the energy exchanges (Raupp &
SilvaDias [4]).

Zj(0) = Aje
ı̂λj ; j = {a, b, c};

∑
j

λj = π/2 (13)

Figure 1 – Slow nonlinear resonant energy exchanges for a
triad: formed of one Rossby (R) and two inertio-gravity waves
(G). The waves are labeled by zonal wavenumber (k), merid-
ional quantum number (n) and wave type (R or G in this case).
Initial energy partion is given by [A2

1 = A2
2 = 1.0;A2

3 = 100.0].
The long wave like approach (thick lines) and shallow water ap-
proach (thin lines) can be compared and correspond to values
of δ = 0.5 and 1.0 respectively.

5. CONCLUSIONS

Both theoretical framework and numerical experiments
confirm that the asymptotic long wave approximation tend
to have a slower energy modulation when compared to the
shallow water equation. There is a potential for a better un-
derstanding of tropical large-scale phenomenon in connec-
tion with smaller spatial scales.
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