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ABSTRACT

It is common in large-scale tropical dynamics the use
of the so called long wave approximation for studies re-
lated to the El Nifio and/or the Madden-Julian oscillation
([1, 2]). This approximation filters out inertia-gravity waves
of all wavelengths while being accurated for Kelvin and long
Rossby waves, however is completely inacurate for short
Rossby waves ([3]). Furthermore, the completeness of the re-
maining waves has not been proven, consequently the repre-
sentation of any phenomenon is questionable. In the present
work, asymptotic methods are used to obtain the long wave
approximation as a limiting case of the shallow water equa-
tion. The difference with previous works is that the transfor-
mation of one regime to another is controled by an external
parameter (§ € [0,1]) which is a measure of the anisotropy
of the space and time scalings. The § — 1 limit correspond
to the shallow water equation, whereas 6 — 0 is for the long
wave approximation, any value in between correspond to in-
termediate realizable states. The model equations developed
here are valid for both limiting cases and also for the interme-
diate states. The advantage of this method is that it allows a
continuous approach to the long wave equations while keep-
ing the completeness of the solutions of the Shallow water
equations. With this approach we have studied nonlinear res-
onant wave energy exchanges. It was verified in both the-
oretical an in numerical experiments that the period of the
nonlinear slow energy modulation increases as J decreases,
some implications for the Tropical dynamics are discussed.

1. GOVERNING EQUATIONS

We start with the nonlinear shallow water equations in the
( plane in its dimensional form (Eq. 1)

Ou+v-Vu—pyv+go,H=0 (1a)
ov+v-Vu+ pyu+ go,H =0 (1b)
OH+v-VH+HV-v=0 (1c)

Where H = H + 7, H is the mean thickness of the fluid
layer, 7 is its dilatation and [y is the equatorial Coriolis pa-
rameter. C' € [10, 50]m/s is the baroclinic wave speed. The
equations are nondimensionalized by taking units of length
and time as in 2.

L= (C/B)"? ~[500,1500]km (2a)
1
T= T~ 8, 18]hrs (2b)

the nondimensionalized and anisotropically scaled (¢ depen-
dency) variables are obtained by doing:

x=(L/0)x";y= Lyt = (T/5)t" (3a)

u=Cu";v=386Cv"H=(C*g)H";n=1n"  (3b)
Where 0 < § < 1, therefore the nondimensional zonal co-
ordinate = and time ¢ is dilatated whereas v is contracted (or
equivalently =" and ¢’ are large scale and slow time respec-
tively whereas v is of a small magnitude). With substitution
(z,y,t,u,v,m)" — (z,y,t,u,v,n) the equations 4 are ob-
tained.

Oru + u0yu + voyu —yv + 0;n =0 (4a)

52 [0¢v 4+ udyv 4+ vOyV] + yu + Oyn = 0 (4b)

O + uden + vIyn + (1 +n)(dzu+0yv) =0 (4c)
2. SPECTRAL REPRESENTATION

With ¢ = (u,v,n)T the spectral representation of the de-
pendent variables and the spectral coefficients are:

A&, y,t) = > Pa(,y) Za(t); (5a)

Za(t) = / ba (x,y)p(x,y, t)dxdy (5b)

where ¢, (x,y) are the eigenfunctions of the linear operator
L defined below

(‘C - Wal)¢a(xay) =0 (6)



The asymptotic model (equation 4) can be written as:

[0:Z(0) + L]¢ + B(¢, $)Z(6) =0 (7)
1 0 O
Where Z(6) = |0 6% 0|;
0 0 1
—yv + Ozh - Vu
L(p)=|+yu+0yh | ;B(p,9)=|T-Vv]. (8a)
Ozu + Oyv V(nv)

3. EVOLUTION EQUATION

Projection of equation (7) onto an arbitrary eigenmode ¢,
results in:

(AT + wal1Za(t) = 1/2 " babe0lTZ; Z5 (9)
be

The coupling coefficient (¢2¢) as a function of § is:

SupeoT = / 6+ B(g7, &) Tddy (10)

Which is valid for resonant and non-resonant interactions.
Using &, = —iv, /w, and Té’c = ug&pé. the coupling coeffi-
cient can be written as

6achZCI = 'Zwa’Yabc + i(wa + wp + wc)Tsc (1 1)

The interaction coefficient (4p.) is clearly modified by &

=2 5 be
(77an * Ve +6CP) Ta - (S{T;a + Tcab}
(12)
Conditions for interaction (n, + np + n. = odd) and reso-
nance (wq +wptwe = 0; ks +kp+k. = 0). Thus the resonant
coupling coefficient shows that there is an effective reduction
of the interaction frequency as ¢ decreases, whereas the inter-
action strenght is also modified, increasing in absolute values
(Wa > dw, for 0 < & < 1;limgs o [Yabe| > lims_—1 [Yabe|)

Yabe = o

4. NUMERICS

For the numerical integration a semi-analytic method is
used, it assumes that the nonlinear terms are constant within
a 2At time interval. If we know the expansion coefficients
Zj,j =a,b,c,--for [t,t — At], it is possible to obtain ana-
lytic solutions at time ¢+ At. The nonlinear terms are defined
at the central time t. Zonal and meridional dependency of the
wave components, as well as their derivatives are computed
analitically. Both, initial amplitudes (A;(wmaz) > Aizjs
defined in eq.13) and phase relationship (XA; = 7/2) are
choosing as to maximize the energy exchanges (Raupp &
SilvaDias [4]).

Zj(0) = Az j = {a, bk Y Nj=m/2 (13
J
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Figure 1 — Slow nonlinear resonant energy exchanges for a
triad: formed of one Rossby (R) and two inertio-gravity waves
(G). The waves are labeled by zonal wavenumber (&), merid-
ional quantum number (n) and wave type (R or G in this case).
Initial energy partion is given by [A7 = A3 = 1.0; A% = 100.0].
The long wave like approach (thick lines) and shallow water ap-
proach (thin lines) can be compared and correspond to values
of § = 0.5 and 1.0 respectively.

5. CONCLUSIONS

Both theoretical framework and numerical experiments
confirm that the asymptotic long wave approximation tend
to have a slower energy modulation when compared to the
shallow water equation. There is a potential for a better un-
derstanding of tropical large-scale phenomenon in connec-
tion with smaller spatial scales.
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