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Abstract 

 This work discusses and simulates the discrete-time 

control of artificial satellites with flexible appendages, 

and its stability in function of growing sampling 

periods. Due to mission needs the dimensions of the 

appendages tend to increase becoming more flexible. As 

a result, it is important to investigate the effects of 

digital characteristics such as sampling period, delays 

(in inputs, processing and outputs) and amplitude 

quantization on it. In this work only the sampling period 

effects are investigated. The discrete-time PD controller 

design is done considering aspects such as the aliasing 

and the hidden oscillations. It is tested with models of 

an harmonic oscillator and of the CBERS1(China-Brazil 

Earth Resources Satellite), comparing the analog PD 

with discrete-time PDs obtained by standard s-z 

mappings (Tustin and Schneider) and by a new 

mapping, using the same gains for them. Root-loci,  

transient and steady-state responses were used to 

analyze their performances. These suggest partial 

methods of stabilization; and that the new mapping has 

the best performance among the mappings tested. 

Introduction 

 As detailed in the literature
6
 ,the worldwide space trend 

in the next century will be the production of bigger but 

lighter space systems. These systems will be more 

flexible and deformable and then will demand the  

control of its vibrations and forms. To meet these new 

requirements such controls must have increased  

capabilities and must solve new problems, as the one 

discussed below. 

  This work discusses and simulates the discrete control 

of satellites with flexible appendages using models of an 

harmonic oscillator and of the CBERS-1 satellite
16
. As 

detailed in literature
2,4,12,17

, it is interesting to use digital 

computers and signals in control systems, because they 

are cheap, practical, etc., and they offer 

capabilities(logical, reprogramming, etc.) convenient to 

build and maintain the control program of a 

vehicle/mission. 

 

 

 

However, this creates a fundamental problem when the 

vehicle is flexible: to control infinite vibration modes 

(as it occurs in the real case) with a digital control that 

intrinsically has an upper frequency limit ωN=ωS / 2, 

where ωS  is the sampling frequency as explained below. 

  A first problem of a digital control is its sampling in 

time, especially when it is controlling flexible 

structures. The structures oscillate with infinite modes 

of vibration (maximum spectral component frequency 

ωmax→∞ ), but the A/D converter samples the signal 

with a finite frequency called sampling frequency ωS, 

where ωS << ωmax 
5,17
. This causes a drastic loss, 

distortion or mutilation of information, by the aliasing 

(masking) or even hiding of the frequencies in the 

interval ωS/2 < ω < ωmax. So, the aliasing and the hidden 

oscillations will occur  when the known Nyquist 

frequency ωN=ωS / 2 is less than the maximum spectral 

component of frequency ωmáx,, causing effects little 

studied in the literature 
1-17
.  

  The discretization process can be analyzed as follows: 

a) given the analog system of Figure 1, where D(s) and 

G(s) are the controller and the plant transfer functions, 

respectively; we want to analyze an equivalent digital 

control system of Figure 2 by: b) rearranging it as in 

Figure 3; c) a simple block manipulation as in Figure 4; 

d)  modeling the A/D converter as in Figure 5; e) 

representing it as in Figure 6. 
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R (s ) E (s ) U (s ) Y (s )

 

Fig. 1. Closed-loop analog control system. 
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Figure 2: Closed-loop digital control system block diagram. 

  In Figure 6 we have the discrete-time controller D(z) 

and the plant Zero-Order Hold equivalent GHO(z) given 

by: 
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Fig.3:Closed-loop digital control system rearranged (1). 
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Fig.4:Closed-loop digital control system rearranged (2). 
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Fig.5: Closed-loop digital control system rearranged (3) 

with A/D and D/A sample & hold models. 

  In the next session we’ll explain some s-z mappings. 

D(z) GHO(z)
+

-

R(z) Y(z)

 

Fig.6:Discrete-time approximation to the closed-loop 

analog control system. 



S-Z Mappings Used 

  All the control algorithms that are processed in a 

digital computer possess a structure based on finite 

differences equations. The standard ones used in this 

paper are in Table 1: 

  1) Backward
4,9,17

 approximation: its difference 

equation is given by: 
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where TS is the sampling period, ek and uk are the
.
 input 

and output sequences of samples when the plant is a 

derivative transfer function. Taking the  one sided Z-

transform of (2) given by the definition  (3), where (fk) 

is a generic sequence, we can write the s-z mapping (4).  
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  2) The Forward
4,9,17

 approximation has the following 

difference equation: 
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and, after using (3), it gives the following s-z mapping: 
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  From (5) we may see its non-causality characteristic: 

to generate the current output uk it is necessary to have 

the next input ek+1! Filters designed with this kind of 

approximation become unstable in the closed loop 

system and never can be employed in real-time digital 

control systems. 

  3) The Tustin
4,9,17

 (or Bilinear) approximation is better 

than the last two because its s-z mapping preserves 

stability, i.e., all the left half s-plane is mapped 

biunivocally in the interior of the unit circle in the z-

plane, as we can see in Fig. 8. Its difference equation is 

given by the second-order Adams-Moulton integration 

formula
14
: 
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which, after using (3), gives the s-z mapping: 
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  4) The Schneider rule
13,14,17

 is described as an s-z 

mapping using the third-order Adams-Moulton 

integration formula: 
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that can be written as follows: 
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  Applying (3) in (9) (or (10)) we have the following s-z 

mapping: 
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  As shown in Fig. 7, the Schneider s-z mapping can 

unstabilize the closed-loop control system when a 

derivative control action is employed. 

 

Figure 7: Unstable pole of Schneider s-z mapping. 

  5) The new-rule
17
 has the following difference 

equation: 
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where ξ is a constant. The new rule was inspired in the 
Tustin rule displacing its z1 = -1 pole to z1’ = -ξ , 0 < ξ 
< 1. It produces good results in comparison with the 

classical mappings. The new rule moves the z1’ pole to  

the interior of the unit circle, using ξ as a design 
parameter. 

  Using (3) in (12) gives the s-z mapping: 
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  The used discrete-time approximations can be found in 

Table 1. In Table 2 we can find the PD controllers 

designed with these approximations, where kp and kd are 

the proportional and derivative control gains.



 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: S-plan to z-plan mappings of the asymptotically stable region 

Table 1: Discrete-time mappings 
 

 

Discrete-time mappings 
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Table 2: D(z) discrete-time PD controllers 
 

 

Discrete-time PD controllers  
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Table 3: Harmonic oscillator zero order hold equivalences. 
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Plants Used 

  1) Free and Damped Harmonic Oscillators, whose 

transfer functions are: 
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  Their discrete-time equivalents GH0(z), given by (1), 

are showed in Table 3. 

  2) A CBERS1 model: according to current literature
16
, 

it employs the right-eigenvalues matrix 

]     [
321 n

φφφφ MKMMM=Φ  as the transformation 

matrix from a modal coordinate η(t) to physical 
coordinates X(t) given by: 

    X(t)=Φ.η(t)                                                            (17) 

  The modal equation of motion of a satellite, including 

the structural damping used is: 
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where ζ is the damping ratio, I is the inertia tensor, ωi is 

the natural undamped frequency, bc is the control 

influence matrix and u is the control vector. 

Finally, the linear differential state space equation is 

given by: 

    uBtXAtX .)(.)( +=
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  Where A and B are the matrices responsible for the 

system dynamics and the actuators positioning in the  

state space form, respectively. 

Simulations 

1) Harmonic-oscillator: Figures 9 and 10 show 

simulations of the over-damped harmonic oscillator 

with a PD controller designed by Tustin rule and by the 

new rule, i.e., using the third and fifth expressions from 

left to right of Table 2 as D(z), and the damped 

expression of Table 3 as GH0(z). We may see that this 

one stabilizes the system but the other not. Their root-

loci are in Figure 11 and 12. The Forward and 

Schneider mappings of the PD control didn’t behave 

well and will not be shown. 

2) A model of the CBERS1 satellite: Figures 13 to 20 

show the results for the Tustin mapping and for the 

new-rule mapping controlling the 2 modes model. We 

may note a strong control signal in Fig. 16 provoked 

probably by the sampler keying. These Figures shown 

very clearly that the new-rule mapping has a better 

performance that the Tustin mapping (note the unstable 

Yaw axis in Figures 13 and 16). 

Conclusions 

 First, it is important to call the attention for the 

existence of the problem of instability that can be 

introduced in the discrete-time control systems mainly 

for high sampling periods TS. The choice of the 

sampling period TS , aliasing filter, control gains, 

structural damping, and the type of s-z mapping to 

design such controller in discrete time will be decisive 

factors for reaching stability. 

  Second, the new rule represents a promising alternative 

for the stabilization of a control system in discrete time 

when the plant is a flexible structure and has high values 

of the sampling period TS. The simulations with the new 

rule shown a better performance for the damped 

harmonic oscillator  as for the CBERS1 model used. 

However, it is very important to note that this model
16
 is 

a linear model with five modes of vibration and it does 

not represents all nuances of the real structure; in 

particular, the increasing damping with the mode 

number and other energy dissipative phenomena. 

Therefore, these conclusions are valid for the models 

used in this work but not necessarily for the real 

satellite. It is suggested to verify them with better 

models and/or experimentally in future works. 
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Fig. 9. Overdamped harmonic oscillator 

controlled by a PD designed by the Tustin- rule 

(TS = 1,6 seconds): unstable. 

 

Fig. 10. Overdamped harmonic oscillator 

controlled by a PD designed by the new-

rule (TS = 1,6 seconds): assymptot.stable. 

 

Fig. 11. Root-locus relative to Fig. 9. 

 

Fig. 12. Root-locus relative to Fig. 10. 

 



 

Fig. 13. Attitude angles of a CBERS1 

simulation with the Tustin-rule. 

 

Fig. 17. Attitude angles of a CBERS1 

simulation with the new-rule. 

 

Fig. 14. Mode 1 for the simulation with the 

Tustin rule. 

 

Fig. 18. Mode 1 for the simulation with the 

new rule. 

 

Fig. 15. Mode 2 for the simulation with the 

Tustin rule. 

 

Fig. 19. Mode 2 for the simulation with the 

new rule. 

 

Fig. 16. PD Control signals for the 

CBERS1 simulation with the Tustin-rule. 

 

Fig. 20. PD Control signals for the CBERS1 

simulation with the new-rule. 

 


