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SPIDER – II. The Fundamental Plane of early-type galaxies in grizYJHK
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ABSTRACT

We present a complete analysis of the Fundamental Plane (FP) of early-type galaxies (ETGs)
in the nearby Universe (z < 0.1). The sample, as defined in Paper I, comprises 39 993 ETGs
located in environments covering the entire domain in local density (from field to cluster). We
derive the FP in the grizYJHK wavebands with a detailed discussion on fitting procedure, bias
due to selection effects and bias due to correlated errors on the effective parameters, re and
〈μ〉e, as key factors in obtaining meaningful FP coefficients. Studying the Kormendy relation
(KR) we find that its slope varies from g (3.44 ± 0.04) through K (3.80 ± 0.02) implying that
smaller size ETGs have a larger ratio of optical to near-infrared (NIR) radii than galaxies with
larger re. We also examine the Faber–Jackson (FJ) relation and find that its slope is similar
for all wavebands, within the uncertainties, with a mean value of 0.198 ± 0.007. Writing the
FP equation as log re = a log σ 0 + b〈μ〉e + c, we find that the ‘a’ varies from 1.38 ± 0.02
in g to 1.55 ± 0.02 in K, implying a 12 per cent variation across the grizYJHK wavelength
baseline. The corresponding variation of ‘b’ is negligible (b ∼ 0.316), while ‘c’ varies by
∼10 per cent. We show that the waveband dependence of the FJ and KR results from the
complex variation of the distribution of galaxies in the face-on projection of the FP as well as
by the change of FP coefficients with waveband. We find that ‘a’ and ‘b’ become smaller for
higher Sersic index and larger axial ratios, independent of the waveband. This suggests that
these variations are likely to be related to differences in structural and dynamical (rather than
stellar population) properties of ETGs. It is noticeable that galaxies with bluer colours and
disc-like isophotes have smaller ‘b’, with the effect decreasing smoothly from g through K.
Considering a power-law relation between mass-to-light ratio and (dynamical) mass, M/L ∝
Mγ , we estimate γ from the FP coefficients in grizYJHK. The γ decreases from 0.224 ±
0.008 in g to 0.186 ± 0.009 in K band. Using the γ values, we estimate the variation of
age and metallicity of the stellar populations present in massive galaxies per decade in stellar
mass. This analysis shows that in the NIR the tilt of the FP is not due to stellar population
variation, and that ETGs have coeval stellar populations with an age variation of a few per cent
per decade in mass, and a corresponding metallicity increase of ∼23 per cent. We also show
that current semi-analytical models of galaxy formation reproduce very well these amounts of
variation of age and metallicity with respect to stellar mass.
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1 IN T RO D U C T I O N

One of the most outstanding and basic cosmological questions is
how galaxies form and evolve. Currently the favoured scenario as-

�E-mail: labarber@na.astro.it (FLB); rrdecarvalho2008@gmail.com
(RRdC)

sumes that the assemblage of baryonic matter is driven by the evolu-
tion of dark matter haloes (Gott & Rees 1975). Given the difficulty
of observing dark matter, we rely on the luminous counterpart to be
a beacon illuminating their evolution. The vast majority of stars and
metals produced during the evolution of galaxies were formed and
still reside in them. Therefore, examining the star formation history
and measuring the metal content of galaxies may tell us how these
systems evolve through cosmic time.
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The study of the global properties of elliptical galaxies took a sub-
stantial step forward with the application of multivariate analysis,
revealing potentially meaningful scaling relations like the Funda-
mental Plane (FP; Brosche 1973). However, the importance of the
technique pioneered by this paper was not immediately realized by
the astronomical community. Determining which dimensions are
statistically significant in a given data set is not a simple task, but
it can reveal useful correlations involving the quantities defining a
minimal manifold and provide insights into the physical nature of
such correlations. Such is the case when the observed FP is asso-
ciated with the virial theorem (Djorgovski & Davis 1987; Dressler
et al. 1987).

Many studies over the past twenty years have tried to interpret
the physical meaning of the FP (e.g. Faber et al. 1987; Djorgovski
& de Carvalho 1990; Jørgensen, Franx & Kjærgaard 1996, here-
after JFK96; Pahre, de Carvalho & Djorgovski 1998a; Jørgensen
et al. 1999; Bernardi et al. 2003a,b,c; Dantas et al. 2003; Nelan
et al. 2005; Cappellari et al. 2006). The striking feature of the FP is
its narrowness, implying a regularity among the global properties
of early-type galaxies (ETGs). The quantities containing the entire
variance of the data are effective radius, re, central velocity disper-
sion, σ ◦, and mean surface brightness measured within the effective
radius, μe. The best representation of the FP is re ∼ σA

◦ IB
e , where Ie

is mean surface brightness in flux units. Bernardi et al. (2003c) show
a comprehensive table listing the most important papers presenting
values of A and B and their respective errors. A seems to vary with
the passband used in the photometric observation, while B does not
(see e.g. Pahre et al. 1998a; Scodeggio et al. 1998; Mobasher et al.
1999). However, Bernardi et al. (2003c) found only a marginally
significant variation of A in the SDSS optical passbands (see also
Hyde & Bernardi 2009). La Barbera et al. (2008b, hereafter LBM08)
also found a small difference in A when measured between r and K
bands.

Assuming that ETGs are homologous systems in dynamical equi-
librium and that velocity dispersion is related to the kinetic energy
per unit mass we can write down expressions for mass (M) and
luminosity (L), namely (M/L) ∼ σ 2−AI−1−B. In the case of a fully
virialized system, A = 2 and B = −1, implying a constant mass-to-
light ratio. However, A and B are found to differ significantly from
the virial values, resulting in the so-called tilt of the FP. In this case,
M/L ∼ Mγ , where γ is ∼0.25 (Faber et al. 1987). This dependence
of the mass-to-light ratio on galaxy mass has been interpreted as
arising either from differences in the stellar populations or the dark
matter fractions among ETGs. It is important to emphasize that an-
other option to explain the tilt is related to the assumption that ETGs
are truly virialized systems – in which case they should have self-
similar density distributions and similar orbital distributions. Any
departure from either or both of these conditions may well explain
the tilt, and several studies have tried to disentangle these effects.
For instance, non-homology seems to contribute to at least part of
the tilt (Capelato, de Carvalho & Carlberg 1995; Hjorth & Madsen
1995; Ciotti, Lanzoni & Renzini 1996; Busarello et al. 1997; Ciotti
& Lanzoni 1997; Graham & Colless 1997; Bertin, Ciotti & del
Principe 2002; Trujillo, Burkert & Bell 2004). Even studies try-
ing to explain the tilt as a stellar population effect concluded that
non-homology may play a significant role in determining the tilt of
the FP (e.g. Pahre et al. 1998a; Forbes & Ponman 1999). Another
interesting finding from the simulations of Capelato et al. (1995)
is that when measuring the structural parameters defining the FP
inside larger apertures, of order a few re, the coefficients are similar
to those implied by the virial theorem. More recently, Bolton et al.
(2008) find a similar result when using the surface density term

defined by the mass measured through strong lensing, and conclude
that the tilt of the FP is due to the fraction of dark matter inside one
effective radius (see also Tortora et al. 2009).

This is the second paper of a series analysing the properties
and the scaling relations of ETGs as a function of the environ-
ment where they reside. The Spheroids Panchromatic Investigation
in Different Environmental Regions (SPIDER) utilizes optical and
near-infrared (NIR) photometry in the grizYJHK wavebands, along
with spectroscopic data, taken from the UKIRT Infrared Deep Sky
Survey-Large Area Survey (UKIDSS-LAS) and the Sloan Digital
Sky Survey (SDSS). The selection of ETGs for this project is de-
tailed in Paper I, and we refer the reader to that paper for all the
details of sample selection and the procedures used to derive the
galaxy parameters.

In this work we focus on the derivation of the FP in the grizYJHK
wavebands for the entire SPIDER sample. Although our sample
contains ETGs over the entire domain of local density (from field to
clusters), we postpone the study of the environmental dependence
of the FP to another paper in the SPIDER series (Paper III). In the
present work, we discuss the main pitfalls of the FP fitting procedure
and how to account for selection effects and different sources of
biases. We analyse the edge-on and face-on projections of the FP,
as well as the two other projections of the FP, i.e. the Kormendy
relation (KR) and Faber–Jackson (FJ) relation. The analysis of these
two scaling relations serves as a reference at the local Universe
(z < 0.1), and at different wavebands, for other studies lacking data
for a full FP analysis. We find a consistent picture connecting the
waveband variation of the edge- and face-on projections of the FP
with that of the KR and FJ relation. Finally, we show how the optical
and NIR FPs can constrain various scenarios for galaxy formation
and evolution, by using the wavelength dependence of the FP to
infer the variation of stellar population parameters along the ETG’s
sequence.

The layout of the paper is as follows. Section 2 shortly describes
the SPIDER data set. Section 3 presents the different subsamples of
ETGs used to derive the FP in grizYJHK and to analyse the impact
of different biases on the FP. Section 4 details the FP fitting proce-
dure. Sections 5 and 6 analyse the KR and FJ relation, respectively.
Section 7 presents one main result of this study, i.e. the dependence
of FP slopes on waveband, from g through K. Section 8 analyses
the waveband variation of the edge- and face-on projections of the
FP. Section 9 describes how the optical and NIR scaling relations of
ETGs constrain the variation of stellar population properties along
the FP. Discussion follows in Section 10. A summary is provided
in Section 11.

Throughout the paper, we adopt a cosmology with H0 =
75 km s−1 Mpc−1, �m = 0.3 and �� = 0.7.

2 DATA

The SPIDER data set is based on a sample of 39 993 ETGs (see
Paper I for details), with available griz photometry and spectroscopy
from SDSS Data Release 6 (DR6). Out of these galaxies, 5080 ob-
jects have also photometry available in the YJHK wavebands from
UKIDSS-LAS. All galaxies have two estimates of the central veloc-
ity dispersion, one from SDSS DR6 and an alternative measurement
obtained by fitting SDSS spectra with the software STARLIGHT (Cid
Fernandes et al. 2005), using a linear combination of simple stel-
lar population models (rather than single templates as in SDSS)
with different ages and metallicities. In both cases, STARLIGHT and
SDSS DR6, the σ 0s are aperture corrected to an aperture of re/8,
following Jørgensen, Franx & Kjærgaard (1995). In order to make

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 1335–1360



SPIDER – II. The FP in grizYJHK 1337

proper comparisons to earlier studies (e.g. Bernardi et al. 2003a),
we use SDSS velocity dispersion measurements to examine the
scaling relations presented in this paper. In Paper I, we find that the
mean difference between σ 0 (SDSS DR6) and σ 0 (STARLIGHT) does
not change significantly with σ 0. Therefore, we do not expect that
the choice of a given velocity dispersion measurement might have
a dramatic impact on the FP relation. This is further discussed in
Sections 6, 7 and 9.

In all wavebands, structural parameters – i.e. the effective radius,
re, the mean surface brightness within that radius, 〈μ〉e, and the
Sersic index, n – have been all homogeneously measured by 2DPHOT

(La Barbera et al. 2008a). In the optical (griz), alternative estimates
of the effective parameters, re and 〈μ〉e, are also available from the
SDSS DR6 PHOTO pipeline. In Paper I, we compare the different es-
timates of photometric and spectroscopic parameters, deriving also
an estimate of the 95 per cent completeness limit of the sample in
all wavebands. We find that 2DPHOT total magnitudes are brighter
than SDSS model magnitudes, with the difference amounting to
∼0.2 mag in r band, for the faintest galaxies in the sample. This
difference is due to the use of Sersic (2DPHOT) rather than de Vau-
couleurs (PHOTO) models to fit the light distribution of ETGs, as
well as to the sky estimate bias affecting SDSS effective parameters
(Adelman-McCarthy et al. 2008; Abazajian et al. 2009). Hence, the
completeness limit of the sample is also dependent on the source of
effective parameters (2DPHOT versus PHOTO). In r band, the sample
is 95 per cent complete at −20.32 and −20.55 for the SDSS and
2DPHOT parameters, respectively. In the following, unless explicitly
said, we refer to 2DPHOT total magnitudes.

3 THE SAMPLES

The waveband dependence of the FP is analysed using different
subsamples of ETGs, extracted from the SPIDER sample. Details
on each subsample are provided in Section 3.1. In order to analyse
the effect of different sources of bias on the FP relation, we also
utilize several samples of ETGs, with effective parameters in r band.
We describe the characteristics of these samples in Section 3.2,
referring to them, hereafter, as the control samples of ETGs.

3.1 The grizYJHK (SDSS+UKIDSS) samples of ETGs

In order to analyse how different selection procedures might af-
fect the dependence of the FP relation on waveband, we derive
the FP in the grizYJHK wavebands for ETG’s SPIDER subsam-
ples defined by two different selection procedures. In case (i), we
derive the FP for the same sample of ETGs in all wavebands, by
selecting those galaxies brighter than the r-band completeness limit
(0.07Mr = −20.55). We exclude galaxies whose Sersic fit, in one of
the available wavebands, has a high reduced χ 2 value (≥3). This
cut removes less than 2 per cent of galaxies, resulting in a sample of
4589 ETGs. In case (ii), we select different samples of ETGs in the
different wavebands, but according to equivalent magnitude limits.
The equivalent magnitude limits are derived by using the optical–
NIR colour–magnitude (CM) relations (see section 4 of Paper I).
To this effect, we first fix the r-band magnitude limit to −20.6 and
then translate it into the other wavebands using the CM relations.
The value of −20.6 is chosen so that, for each band, the equiva-
lent magnitude limit is brighter than the completeness magnitude
in that band, as defined in Paper I. This makes the samples magni-
tude complete in all wavebands. The equivalent magnitude limits
are reported in column 2 of Table 1, along with the 95 per cent

Table 1. Magnitude limits in grizYJHK adopted to derive the FP.

Waveband Xa 0.07MX limit NX

g −19.75 −19.71 4467
r −20.60 −20.55 4478
i −21.02 −20.99 4455
z −21.34 −21.22 4319
Y −22.03 −21.95 4404
J −22.55 −22.54 4317
H −23.22 −23.21 4376
K −23.60 −23.60 4350

aX is the equivalent magnitude limit as used in the colour-selected
samples.

completeness magnitude limits, from Paper I, in column 3, as well
as the number of ETGs selected in each band in column 4.

In the following, we refer to the ETG sample of case (i) as the
(r band) magnitude-selected sample of ETGs, while the samples of
case (ii) are referred to as the colour-selected samples of ETGs.

3.2 Control samples of ETGs

We use five control samples of ETGs selected from SDSS DR6,
with photometry available in r band. The control samples consist of
ETGs selected in different redshift ranges, with effective parameters
and central velocity dispersions measured with different methods. In
all cases, velocity dispersions are corrected to an aperture of re/8,
following Jørgensen et al. (1995). Each control sample is named
with a letter, as shown in Table 2, where we summarize the basic
characteristics of the five samples.

(1) Sample A is obtained from the sample of 39 993 ETGs defined
in Paper I. We select all galaxies with an r-band model magnitude
brighter than −20.32. This magnitude cut corresponds to the 95 per
cent completeness limit in r band, as defined in Paper I, when using
SDSS model magnitudes (see Section 2). Effective parameters are
obtained from SDSS, as in Bernardi et al. (2003a).

(2) Sample B is a subsample of sample A, consisting of all the
ETGs that also have photometry available in the YJHK wavebands
(see Paper I). Such sample is used to estimate the impact of matching
SDSS to UKIDSS data on the FP relation.

(3) Sample C is defined to explore a wider magnitude range
than that of samples A and B. We query the SDSS DR6 data base
for ETGs in a redshift range of z = 0.02 to 0.03. ETGs are defined
according to the same criteria as in Paper I, i.e. zwarning = 0, eclass
< 0 and fracDevr > 0.8. No requirement is done for the galaxy
velocity dispersion. The query results into a list of 3732 galaxies,
that hereafter we refer to as the low-redshift sample of ETGs. All
galaxies have effective parameters from SDSS. Using the same
procedure as in Paper I, we estimate a 95 per cent completeness limit
of 0.07Mr = −17.64 (model magnitude). Since velocity dispersions
from SDSS are not available for all galaxies in this sample, we assign
fake σ 0 values to each pair of re and 〈μ〉e values, as described in
Section 4.2.

(4) Samples D and E are defined in the same way as samples
A and B, respectively, but using 2DPHOT rather than SDSS effective
parameters. For both samples, we select all the ETGs in the SPIDER
sample with total magnitude brighter than 0.07Mr = −20.5x5 (corre-
sponding to the 2DPHOT completeness magnitude). Sample E is ob-
tained from sample D by selecting only those objects with matched
photometry in UKIDSS. Sample E coincides with the magnitude-
selected sample of ETGs in r band (Section 3.1).
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Table 2. Control samples of ETGs.

A B C D E

Number of galaxies 37 273 4796 3690 36 205 4589
Redshift range 0.05 ≤ z ≤ 0.095 0.05 ≤ z ≤ 0.095 0.02 ≤ z ≤ 0.03 0.05 ≤ z ≤ 0.095 0.05 ≤ z ≤ 0.095
Limiting 0.07Mr −20.32 −20.32 −17.64 −20.55 −20.55

Source of re and 〈μ〉e SDSS SDSS SDSS 2DPHOT 2DPHOT

Available wavebands r grizYJHK r r grizYJHK

4 D E R I V I N G TH E F P

We write the FP relation as

log re = a log σ0 + b〈μ〉e + c, (1)

where a and b are the slopes, and c is the offset. We denote the rms
of residuals around the FP with respect to log re as sre , referring
to a, b, c and sre as the coefficients of the FP. We estimate the FP
coefficients by a procedure consisting of three steps. First, we derive
the values of a and b, as described in Section 4.1. The slopes are then
corrected for different sources of biases, including selection effects
(Section 4.2) and the effect of correlated uncertainties on log re and
〈μ〉e, (Section 4.3). The bias-corrected values of a and b are then
used to estimate c and sre (Section 4.1). This procedure is tested
through the ETG’s control samples, as discussed in Section 4.4.

4.1 Fitting procedure

We obtain a first estimate of a and b by minimizing the sum of abso-
lute residuals around the FP. When compared to the ordinary least-
squares fitting method, where one minimizes the sum of squared
residuals, this procedure is more robust, being less sensitive to out-
liers in the distribution of data points around the plane (JFK96). We
adopt two different fitting methods, by minimizing the residuals in
log σ 0 and the orthogonal residuals about the plane. The orthogonal
fit – adopted in most of previous works – has the main advantages
of treating all the variables symmetrically, while the log σ 0 regres-
sion is essentially independent of selections effects in the plane of
effective parameters, such as the magnitude limit (see La Barbera,
Busarello & Capaccioli 2000, hereafter LBC00). The values of a
and b are corrected for selection effects and correlated errors on
effective parameters (see Sections 4.2 and 4.3). The value of c is
then derived as the median value of the quantity log re–a log σ 0–
b〈μ〉e, over all the galaxies of a given sample, with a and b being the
bias-corrected values of FP slopes. As shown in Section 4.2, when
compared to the more common practise of estimating c through the
least-squares procedure itself, the above estimate has the advantage
of providing an unbiased value of c, regardless of the magnitude
selection of the sample. For both fitting methods, we calculate
the scatter of the FP, sre , from the mean value of the absolute resid-
uals in log re around the plane, using the bias-corrected slopes. As
for c, this procedure provides an unbiased estimate of the FP scatter
(see Section 4.2).

4.2 Bias due to selection effects

To estimate how selection criteria (e.g. the magnitude limit) affect
the FP coefficients, we use a simulated sample of data points in
the space of log re, 〈μ〉e and log σ 0, resembling the distribution
of ETGs in that space. The simulated sample is created from the
control sample C, namely all ETGs from SDSS DR6 in the redshift
range of 0.02 to 0.03, brighter than an r-band model magnitude of

0.07Mr = −17.64 (Section 3.2). Since galaxies in this sample do not
have available velocity dispersions, we assign fake σ 0 values. For
each galaxy, we use its log re and 〈μ〉e to obtain a value of σ 0 from
the FP relation (equation 1). That value is then shifted according
to a random Gaussian deviate, with a given width value sσ0 , that
describes the scatter of the FP along the σ 0 axis. The slopes, offset
and scatter parameters are chosen with an iterative procedure.

(1) First, we select all galaxies in sample C with available σ 0

from SDSS DR6, applying similar cuts in magnitude and velocity
dispersion as those for the r-band magnitude-selected sample of
ETGs (sec Section 3.1). This is done by selecting all galaxies with
model magnitude brighter than −20.281 and 70 ≤ σ 0 ≤ 420 km s−1.
This subsample consists of 1682 ETGs out of 3690 galaxies in sam-
ple C. We derive the best-fitting FP coefficients for this subsample,
referring to them as the reference coefficients of the FP.

(2) We assign fake σ 0 values to sample C by using guess val-
ues of a, b, c and sσ0 . Applying the same cuts in magnitude and
velocity dispersion as in the above step, we derive the best-fitting
FP coefficients and compared them to the reference FP coefficients.
The guess values of a, b, c and sσ0 are changed until the best-fitting
simulated FP matches the reference relation. In practise, we are
able to match the simulated and reference coefficients at better than
2 per cent for both the log σ 0 and orthogonal regressions.

Fig. 1 compares the distribution of the 1682 ETGs with available
σ 0s from SDSS in sample C with that of data points for one of
the toy samples, showing the similarity of the two distributions.
The above procedure allows us to create simulated samples in the
space of log re, 〈μ〉e and log σ 0 down to a (model) magnitude limit
of −17.64, which is more than 2.5 mag fainter than the r-band
completeness limit (−20.32) of the ETG samples of Section 3.1.
The effect of any selection cut on the FP can then be estimated by
computing the relative variation of FP coefficients as one applies
that selection to the toy samples.

Fig. 2 plots the relative variation of FP coefficients as a function
of the magnitude cut. The relative variation of a given quantity,
x, out of a, b, c and sre , is computed as (xcut − x)/x, where xcut

is the value estimated for that quantity when the cut is applied.
Here, instead of using the procedure of Section 4.1, the value of c
is directly derived from the fit, and the sre is obtained as the mean
absolute deviation of residuals around the plane, using the (no bias-
corrected) best-fitting coefficients a, b and c. For the orthogonal fit,
we see that brighter the magnitude cut, more the FP coefficients

1 Notice that the value of −20.28 is 0.04 mag fainter than the r-band model
magnitude limit of the magnitude-selected ETG sample (0.07Mr = −20.32,
see Section 2). We obtain −20.28 by adding to −20.32 the difference of
evolutionary correction between the median redshift of the ETG’s sample of
Paper I (z = 0.0725) and that of sample C (z = 0.025). To this aim, following
Bernardi et al. (2003b, hereafter BER03b), we parametrize the evolutionary
correction as −2.5Q log (1 + z), where the coefficient Q is equal to ∼0.85
in r band, at redshift z < 0.3.
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Figure 1. Comparison of the short edge-on projection of the FP for galax-
ies in sample C with available σ 0 from SDSS (black) and one toy sample
(red). For both samples, only points with 0.07Mr ≤ −20.28 and 70 ≤ σ 0 ≤
420 km s−1 have been selected. The values of log σ 0 are plotted against the
variable log re–b〈μ〉e, i.e. the combination of photometric parameters enter-
ing the FP. The slopes (a and b) and scatter (sre ) of the relation, obtained
from the log σ 0 regression procedure, are reported in the upper left-hand
and lower right-hand corners of the plot for the observed and toy sam-
ples, respectively. Notice the negligible difference between the two sets of
coefficients.

tend to be underestimated. This finding is consistent with that of
previous studies (see LBC00; Hyde & Bernardi 2009). For the log σ 0

fit, the FP coefficients are very insensitive, as somewhat expected, to
the selection in magnitude. The vertical lines in Fig. 2 correspond
to the (r-band) model magnitude limit (0.07Mr = −20.28) of the
magnitude-selected sample of ETGs (see Section 3.1), after the
small amount of luminosity evolution between z = 0.025 and 0.075
has been removed (see above). For that magnitude limit, the amounts
of bias in a, b, c and sre (horizontal lines) are significant, amounting
to about 27, 8, 16 and 22 per cent, respectively. The same amounts
of bias are also expected to affect the colour-selected samples of
ETGs (see Section 3.1), whose magnitude limit in r band is very
similar to that of the magnitude-selected sample. We also used the
simulated samples to estimate the impact of the σ 0 cut of the ETG’s
sample on the FP relation. To this aim, we selected only simulated
points with magnitudes brighter than 0.07Mr = −20.28. Applying
the σ 0 selection (70 ≤ σ 0 ≤ 420 km s−1), we found that relative
variation of FP slopes is completely negligible (<1 per cent). This
is due to the fact that, for the magnitude range considered here,
almost all galaxies have σ 0 > 70 km s−1, making the σ 0 selection
unimportant.

For each sample of ETGs, as defined in Section 3.1, we con-
sider the corresponding 2DPHOT r-band magnitude limit. For the
magnitude- and colour-selected subsamples, these limits amount
to −20.55 and −20.6, respectively. The 2DPHOT magnitude limit is
translated to a (model) magnitude limit by adding the term 0.23 mag
which is the difference of 2DPHOT and SDSS completeness magni-
tudes (Section 2). For a given sample, the amount of bias on a and b

Figure 2. Relative variation of FP coefficients as a function of the magni-
tude cut (see the text). The variation is computed between the magnitude
selected and entire toy samples. Empty and filled circles correspond to the
results obtained for the log σ 0 and orthogonal fits, respectively, as shown
in lower right-hand corner of the upper left-hand panel. From left to right
and top to bottom, the four panels show the relation variation (bias) in a,
b, c and sre , respectively. The vertical and horizontal dashed lines mark
the completeness of the magnitude-selected sample of ETGs and the cor-
responding bias values, respectively. The red dashed curve in each panel is
the fourth-order polynomial fit performed to model the bias as a function of
0.07Mr .

is then estimated evaluating the trends in Fig. 2 for the r-band model
magnitude limit of that sample. This is done only for the orthogonal
regression procedure, by modelling the trends in Fig. 2 with fourth-
order polynomials. The biased values of a and b are multiplied by
the estimated x/xcut factors. Notice that the same correction factor
is applied to all the grizYJHK wavebands (see also Section 7.1).
The bias-corrected values of a and b are used to estimate c and
sre (Section 4.1). Fig. 3 shows how the values of c and sre vary as
a function of the magnitude limit, when this procedure is applied,
rather than estimating c and sre from the fit, as in Fig. 2. As stated
in Section 4.1, the estimates of c and sre from the bias-corrected
values of a and b are almost insensitive, within ∼2 per cent, to the
magnitude selection.

4.3 Bias due to correlated errors on re and 〈μ〉e

Another possible source of bias on FP coefficients is the correlation
of uncertainties on log re and 〈μ〉e. As shown in Paper I, the errors
on effective parameters mainly depend on the signal-to-noise ratio
per pixel of galaxy images, and are slightly larger in the NIR than in
the optical wavebands. For instance, the median value of the log re

uncertainties increases from ∼0.09 in g band to ∼0.14 in K band.
This variation might imply a spurious dependence of FP coefficients
on waveband, and thus we have to correct the FP slopes separately
in each band.

The corrections are estimated by (1) constructing simulated sam-
ples of data points in the space of log re, 〈μ〉e and log σ 0, resembling
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Figure 3. Relative variation of the FP offset (upper panel) and scatter (lower
panel) as a function of the magnitude cut, as estimated from the toy FP
samples. The offset, c, and scatter, sre , are estimated from the bias-corrected
FP slopes. Empty and filled circles correspond to the log σ 0 and orthogonal
fit values, respectively. The red dashed lines show a fourth-order polynomial
fit of the filled circles. The vertical and dashed lines mark the completeness
of the magnitude-selected ETG sample and the corresponding expected bias
values. Notice that the bias is negligible for both quantities, being smaller
than ∼2 per cent.

the distribution that galaxy’s parameters would have in that space if
no correlated errors on re and 〈μ〉e would be present (Section 4.3.1),
and (2) estimating how the FP slopes change by adding correlated
uncertainties on the effective parameters of such simulated samples
(Section 4.3.2). Notice that the toy samples of Section 4.2 are not
suitable to apply the above procedure, since the corresponding ef-
fective parameters already include the effect of correlated errors on
the effective parameters.

4.3.1 Simulated samples with no correlated errors

Each simulated sample is generated as follows. First, we extract
log re values from a random deviate whose centre and width values
are given by the mean (0.27 dex) and standard deviation (se =
0.25 dex) of the log re distribution of sample C. For a given log re,
we assign a 〈μ〉e value by the KR:

〈μ〉e = p1 + p2 log re, (2)

where p1 and p2 are the offset and slope, respectively. The values of
p1 and p2 are derived by a robust least-squares fitting procedure for

galaxies in sample C, by minimizing the absolute sum of residuals
in 〈μ〉e around the relation. As shown by La Barbera et al. (2003,
hereafter LBM03), the KR fit is quite insensitive to the correlated
errors on log re and 〈μ〉e. The fit gives p1 ∼ 18.969 and p2 ∼ 1.95,
respectively. Then, we shift the values of 〈μ〉e according to a normal
Gaussian deviate of width 0.4 mag arcsec−2, corresponding to the
intrinsic dispersion in 〈μ〉e of the KR (LBM03). For a given pair of
log re and 〈μ〉e values, we assign a log σ 0 value by the FP relation
(equation 1). The log σ 0 values are shifted according to a random
deviate with given width, s0. The free parameters of this procedure,
i.e. the FP slopes and offset, and the value of s0, are chosen so that,
on average, the FP coefficients of simulated samples match those
of the magnitude-selected sample of ETGs, with the same iterative
procedure as in Section 4.2.

4.3.2 The effect of correlated uncertainties

The log re and 〈μ〉e of the simulated samples are then shifted accord-
ing to a two-dimensional random deviate, whose covariance matrix
terms are given by the median uncertainties on log re and 〈μ〉e for
galaxies in the magnitude-selected samples of ETGs. The proce-
dure is repeated for each waveband, by using the corresponding
median covariance matrix of uncertainties on effective parameters.
We derive the FP slopes by (i) applying the correlated errors, and
(ii) without applying any simulated uncertainty on the effective pa-
rameters. We indicate as δa and δb the ratios of FP slopes of case (ii)
with respect to those obtained in case (i). Each toy sample includes
N = 2000 data points, and the values of δa and δb are averaged over
300 realizations. The values of δa and δb in grizYJHK bands, for
both the orthogonal and log σ 0 regression procedures, are reported
in Table 3. The correlated uncertainties on effective parameters tend
to increase the value of the log σ 0 slope of the FP, and decrease the
coefficient of the 〈μ〉e term. The effect is quite small, in particular
for the coefficient a, amounting to less than a few per cent. The
bias is larger for b, and varies almost by a factor of 2 from the
optical to the NIR wavebands. Moreover, unlike the bias due to
selection effects, it affects both the orthogonal and log σ 0 regres-
sion procedures. Because of the large number of galaxies in the
SPIDER sample, the factors in Table 3 are not negligible with re-
spect to the typical errors on FP slopes (see Section 7.1). Hence, we
correct the slopes of the FP in each band multiplying them by the
corresponding δa and δb factors in Table 3. We have also performed
some tests to check how robust the values of δa and δb are with
respect to the procedure outlined above. First, one can notice that
the adopted slope of the KR (p2 = 1.95) is smaller than that of p2 ∼
3 found by other studies (see LBM03 and references therein) and
by that reported for the SPIDER samples in Section 5. Hence, we

Table 3. Effect of the correlated uncertainties of effective parameters on
the slopes of the FP in different wavebands.

Orthogonal fit log σ 0 fit
Waveband δa δb δa δb

g 0.995 1.038 0.984 1.039
r 0.990 1.035 0.980 1.035
i 0.996 1.031 0.992 1.031
z 0.986 1.043 0.975 1.043
Y 0.992 1.040 0.980 1.039
J 0.985 1.060 0.977 1.062
H 0.980 1.066 0.964 1.065
K 0.975 1.070 0.956 1.069
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derived the offset of the KR by fixing p2 = 3 and repeated the above
procedure with the corresponding values of p1 and p2. Second, one
may notice that the width value itself of the log re distribution,
se = 0.25 dex (see above), is broadened by the measurement errors
on log re, and hence does not correspond to the intrinsic width of
the log re distribution. To account for this effect, we repeated the
above procedure by subtracting in quadrature 0.1 dex (the typical
uncertainty on log re in r band) to the value of se. For both tests,
we found that the variation of the δa and δb estimates in Table 3 is
completely negligible, being smaller than 0.5 per cent.

4.4 Comparison of bias-corrected FP coefficients in r band

In order to test the above procedure for deriving the coefficients
of the FP and correct them for the different sources of biases, we
apply it to the control samples of ETGs (Section 3.2). In Fig. 4,
we plot the corrected slopes of the r-band FP for the five control
samples. For sample C, we select only those 1682 galaxies with
available σ 0s from SDSS, and (model) magnitudes brighter than
−20.28 (see Section 4.3). The values of a and b are also compared
to those recently obtained from Hyde & Bernardi (2009), who took
into account selection effects in the fitting procedure, rather than
applying correction factors as we do here. For all samples, the FP
slopes are corrected for the magnitude bias evaluating the polyno-
mial curves in Fig. 2 at a (model) magnitude of 0.07Mr = −20.28.
For samples D and E, this 0.07Mr value corresponds to the magnitude
limit of −20.55, after difference between model and 2DPHOT total
magnitudes is taken into account (see Paper I). In order to remove
the effect of correlated errors on effective parameters, the slopes of

Figure 4. Slopes of the r-band FP, corrected for selection effects and cor-
related errors on effective parameters, for the control samples of ETGs
(Table 2). Each sample is plotted with a different colour, as shown in the
upper left-hand corner. For each point, the corresponding concentric ellipses
denote the 1σ and 2σ confidence contours for a two-dimensional normal
Gaussian deviate. The dashed lines mark the values of a and b obtained from
Hyde & Bernardi (2009).

samples D and E have also been divided by the r-band correction
factors reported in Table 3.2

Fig. 4 shows that the FP slopes of all control samples are re-
markably consistent within the 2σ level, and differ by less than
∼3 per cent from the values of Hyde & Bernardi (2009), prov-
ing the robustness of the procedure outlined above to derive bias-
corrected FP coefficients. The consistency of FP slopes between
samples A and B (D and E) shows that matching the ETG sample
with UKIDSS does not lead to any significant bias in the estimate
of FP coefficients, in agreement with LBM08. One can also no-
tice that, although the SDSS and 2DPHOT effective parameters differ
significantly (see Paper I), the corresponding FP relations are very
consistent, as shown by the consistency of FP slopes between sam-
ple A and D (B and E). This is due to the fact that the combination
of re and 〈μ〉e that enters the FP is determined with much better ac-
curacy that re and 〈μ〉e themselves (see Kelson et al. 2000), making
the FP relation very stable.

5 TH E KO R M E N DY R E L AT I O N

Fig. 5 plots the re–〈μ〉e diagram for the colour-selected samples of
ETGs (Section 3.1), from g through K. For each band, the figure
also exhibits the completeness limit of the sample in that band, from
Table 1. Galaxies follow a well-defined KR in all wavebands. We
write the KR as in equation (2). In order to characterize the offset,
p1, the slope, p2, and the scatter, sKR , of the KR, we apply the modi-
fied least-squares (hereafter MLS) fitting procedure of LBM03. The
MLS fit allows the coefficients of the KR to be derived by account-
ing for selection cuts in the re–〈μ〉e diagram, such as the magnitude
limit. LBM03 applied three MLS fits. The MLSlog re and MLS〈μ〉e

regressions are obtained by minimizing the residuals around the
relation with respect to log re and 〈μ〉e, respectively. The MLSB fit
corresponds to the bisector line of the MLSlog re and MLS〈μ〉e fits.
The MLSB method is more robust and effective (i.e. lower uncer-
tainties on fitting coefficients) with respect to the other MLS fits.
For this reason, we apply here only the MLSB fit. Moreover, we
generalize the MLS method to the case where orthogonal resid-
uals around the relation are minimized. This orthogonal MLS fit
(hereafter MLSO) is described in Appendix A. For both the MLSB
and MLSO fits, the KR coefficients are derived accounting for the
magnitude limit of the sample in the corresponding waveband. The
scatter of the KR is obtained by the standard deviation of the log re

residuals about the line, accounting for the magnitude cut as de-
tailed in Appendix A. Fig. 5 also plots the MLSB and MLSO lines.
The corresponding fitting coefficients are reported in Table 4.

From Table 4 one sees that the MLSO fit gives a larger value
of the slope, p2, with respect to the bisector fit. The scatter around
the KR is independent of waveband, and larger, by ∼0.01 dex, for
the MLSB than for the MLSO fit. The KR smoothly steepens from
the g through the K band. This is shown in Fig. 6, where we plot
the MLSB slope of the KR as a function of the logarithmic effective
wavelength of each filter. The p2 smoothly increase from a value
of ∼3.44 in g to 3.8 in K. A similar trend is also observed for the
results of the MLSO fit.

2 We also estimated the uncertainties on SDSS PHOTO parameters in the same
way as for the 2DPHOT effective parameters, i.e. by comparing the values of
re and 〈μ〉e from SDSS in r and i bands (see Paper I). For these uncertainties,
we found that the r-band correction factors on FP slopes are even smaller
than those reported in Table 3. Hence, we decided not to apply any further
correction factor to samples A, B and C.
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Figure 5. KR of ETGs in the grizYJHK wavebands (from left to right and top to bottom). For each panel, the dotted line marks the completeness magnitude
in the corresponding waveband. The solid and dashed lines are the best-fitting relations obtained by the orthogonal and bisector fitting methods, respectively
(see the text).

Table 4. Coefficients of the KR in grizYJHK.

Band p1 p2 sKR p1 p2 sKR

MLSB fit MLSO fit

g 19.16 ± 0.04 3.44 ± 0.04 0.126 ± 0.002 18.92 ± 0.02 3.68 ± 0.02 0.115 ± 0.001
r 18.16 ± 0.02 3.55 ± 0.02 0.120 ± 0.002 18.02 ± 0.02 3.72 ± 0.03 0.114 ± 0.001
i 17.74 ± 0.02 3.60 ± 0.02 0.122 ± 0.002 17.60 ± 0.02 3.74 ± 0.02 0.117 ± 0.002
z 17.42 ± 0.02 3.61 ± 0.02 0.121 ± 0.002 17.29 ± 0.02 3.73 ± 0.03 0.116 ± 0.002
Y 16.59 ± 0.02 3.67 ± 0.02 0.125 ± 0.002 16.39 ± 0.02 3.90 ± 0.03 0.117 ± 0.001
J 16.03 ± 0.02 3.72 ± 0.02 0.126 ± 0.002 15.84 ± 0.02 3.95 ± 0.02 0.117 ± 0.002
H 15.31 ± 0.02 3.77 ± 0.02 0.126 ± 0.002 15.13 ± 0.02 3.99 ± 0.03 0.119 ± 0.001
K 14.91 ± 0.02 3.80 ± 0.02 0.128 ± 0.002 14.70 ± 0.02 4.04 ± 0.03 0.119 ± 0.001

In order to analyse the trend of p2 with waveband, we follow the
same approach as in La Barbera et al. (2004). Given two wavebands,
X and W (X, W = grizYJHK), one can relate the corresponding
slopes of the KR, p2,X and p2,W , through the following equation:

p2,X = (p2,W + 5	XW ) − ζ (5 − p2,W )

1 + 	XW

, (3)

where 	XW is the slope of the X − W versus W CM relation, and ζ

parametrizes the variation of the mean logarithmic ratio of X to W
effective radii, log(re,W/re,X), as a function of re:

log
re,W

re,X
∝ ζ log re,X. (4)

We first consider the case where the mean ratio of effective radii
does not change along the sequence of ETGs, i.e. ζ = 0. Setting X =
K and W = g, using the value of 	gK from Paper I (0.034 ± 0.016)
and the value of p2,g of the MLSB fit, equation (3) would imply
p2,K = 3.53 ± 0.02. This value is significantly smaller than that
reported in Table 4 (3.80 ± 0.02), implying that the assumption ζ =
0 is incorrect. Indeed, inverting equation (3) and using the MLSB
values of p2,g and p2,K , one obtains ζ = −0.19 ± 0.02. The negative
sign of ζ implies that galaxies with smaller re,K tend to have, on

average, larger (re,g/re,K) value. In other terms, the NIR light profile
of ETGs is more concentrated in the centre with respect to the optical
for small (relative to larger) galaxies. The dependence of (re,g/re,K)
on re,K can be directly analysed by binning the SPIDER sample
with respect to re,K and computing the median value of (re,g/re,K)
in each bin. The result of this procedure is shown in Fig. 7. We
clearly see that the median value of (re,g/re,K) decreases as re,K

increases, and that the trend is fully consistent with what expected
from the waveband variation of the KR slope (equations 3 and 4;
see dashed line in the figure). In the simplistic assumption that
(re,g/re,K) is a good proxy for the internal colour gradient in ETGs,
the increasing of KR slope from g through K would imply that
smaller size ETGs have stronger (more negative) internal colour
gradients than galaxies with larger re. This point will be further
analysed in a forthcoming paper, studying the optical–NIR colour
gradients in the SPIDER sample (see also La Barbera & de Carvalho
2009) and their correlations with galaxy properties.

The slope of the MLSB fit can be compared to that obtained
from LBM03 for a sample of ETGs in clusters at intermediate
redshifts, from z ∼ 0 to ∼0.64. Using the MLSB fit, LBM03 found
p2 = 2.92 ± 0.08 in V-band rest frame. This should be compared
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Figure 6. The slope of the KR, obtained with the MLSB fit, p2, is plotted as
a function of the logarithmic effective wavelength, log λ, of the passbands
where effective parameters are measured.

Figure 7. Logarithmic ratio of g- to K-band effective radii as a function of
log re in K band. The solid line connects the data points obtained by median
binning the distribution of log re,g/re,K with respect to log re,K , with each
bin including the same number (N = 200) of points. The trend is fully
consistent with that expected from the variation of KR slope from g to K
(dashed line). The dotted line marks the value of zero. Error bars denote 1σ

errors on median values in different bins.

with the value of p2 = 3.44 ± 0.04 we obtain for the SPIDER
sample in the g band (see Table 4), which matches approximately
V-band rest frame. The slope of LBM03 is significantly flatter, by
∼15 per cent, that that we find here. One should notice that LBM03
selected ETGs by a cut in the Sersic index n (n > 2), while ETGs
are defined here according to several photometric and spectroscopic
criteria. Moreover, ETGs in the SPIDER sample reside in a wide
range of environments, while ETGs in LBM03 mostly belong to
rich galaxy clusters. Both these issues might be responsible for the
above difference of KR slope values.

6 TH E FA B E R – JAC K S O N R E L AT I O N

We write the FJ relation as

log σ0 = λ0 + λ1(log L + 0.4X), (5)

where λ0 and λ1 are the offset and slope of the relation, and X is the
magnitude limit in a given waveband (see Table 1). According to
this notation, the coefficient λ0 is the log σ 0 value predicted from the
FJ relation for galaxies of magnitude X. The galaxy luminosity, L,
is defined as 10−0.4×0.07M , where 0.07M is the 2DPHOT absolute mag-
nitude in the given band. In order to derive the coefficients λ0 and
λ1 we use the colour-selected samples of ETGs (Section 3.1). Fig. 8
plots the distributions of ETGs in the log σ 0 versus log L diagrams.
Each sample is binned in log σ 0, and the peak value of the log L
distribution in a given bin is computed by the bi-weight statistics
(Beers, Flynn & Gebhardt 1990). Since all colour-selected sam-
ples are magnitude complete, the binning procedure produces un-
biased estimates of the average log L value as a function of log σ 0.
The binned values of log L versus log σ 0 are then fitted with an
orthogonal least-squares fitting procedure. For each band, the fit
is performed over a fixed luminosity range of one decade, with
−0.4X ≤ log L ≤ −0.4X + 1. Uncertainties on λ0 and λ1 are es-
timated by N = 500 bootstrap iterations, shifting each time the
log L binned values according to their error bars. The values of
λ0 and λ1 in grizYJHK bands are reported in Table 5, along with
the log σ 0 scatter of the relation, σFJ , and its intrinsic dispersion,
σ i

FJ
. The scatter is estimated as follows. For each bootstrap iteration,

we calculate the rms of the log σ 0 residuals through the median
absolute deviation estimator. The mean value and the standard de-
viation of the rms values among the different iterations provide the
σFJ and its error. The intrinsic scatter is computed by a similar pro-
cedure, subtracting in quadrature, for each iteration, the amount of
dispersion due to the uncertainties on log L and log σ 0 from the rms
values. Considering the uncertainties, the slopes of the FJ relations
are consistent among the different wavebands, with the mean value
of λ1 amounting to 0.198 ± 0.007. Using the magnitude- rather than
the colour-selected samples of ETGs, this result does not change,
with the value of λ1 varying from 0.192 ± 0.018 to 0.209 ± 0.018
in r band, and from 0.220 ± 0.023 to 0.216 ± 0.032 in K band.
Using STARLIGHT log σ 0 values would also not change significantly
the λ1 values, with the mean value of λ1 varying from 0.198 ± 0.007
to 0.187 ± 0.007. For what concerns the intrinsic dispersion around
the FJ relation, it smoothly decreases by ∼0.008 dex from g through
K, with a value of ∼0.091 dex in the optical and ∼0.083 dex in K
band. Fixing the slope of the FJ relation in all wavebands to the
average value of λ1 = 0.198 would make this amount of variation
to be 0.017 dex rather than 0.008 dex. Subtracting in quadrature the
values of σ i

FJ
between the g and K bands, one obtains a value of

∼0.037 dex (i.e. ∼9 per cent in σ 0).
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Figure 8. The FJ relation of ETGs in the grizYJHK wavebands (from left to right and top to bottom). For each panel, the grey curve is obtained by binning the
data with respect to log L, with each including the same number (N = 40) of galaxies. For each bin, the bi-weight peak of the log σ 0 distribution is computed.
Coloured lines show the orthogonal fit to the binned data.

Table 5. Coefficients of the FJ relation in grizYJHK.

Band λ0 λ1 σFJ σ i
FJ

g 2.158 ± 0.008 0.172 ± 0.018 0.097 ± 0.002 0.091 ± 0.002
r 2.151 ± 0.008 0.192 ± 0.018 0.096 ± 0.002 0.090 ± 0.002
i 2.155 ± 0.008 0.185 ± 0.016 0.093 ± 0.002 0.087 ± 0.002
z 2.158 ± 0.008 0.172 ± 0.018 0.097 ± 0.002 0.091 ± 0.002
Y 2.144 ± 0.007 0.217 ± 0.016 0.094 ± 0.002 0.087 ± 0.009
J 2.168 ± 0.008 0.194 ± 0.022 0.091 ± 0.002 0.084 ± 0.002
H 2.140 ± 0.008 0.233 ± 0.018 0.091 ± 0.002 0.084 ± 0.002
K 2.143 ± 0.009 0.220 ± 0.023 0.090 ± 0.002 0.083 ± 0.002

The slope value of the r-band FJ relation is close, but flatter, than
that of 0.25 reported by Bernardi (2007) (see their equation 2). This
difference can be explained by the fact that we use Sersic (rather than
de Vaucouleurs) total magnitudes and by the small systematic effect
in SDSS model magnitudes (see Paper I). As shown in Paper I, both
effects make 2DPHOT total magnitudes to be shifted toward brighter
values with respect to SDSS model magnitudes. The amount of
shift is larger for bright than faint galaxies, producing a flatter FJ
relation. The difference might also be related to the fact that the
slope of the FJ relation seems to change according to the magnitude
range where galaxies are selected (see e.g. Matković & Guzmán
2005). The slope value of the K-band relation, λ1 ∼ 0.23, is fully
consistent with the value of 0.24 reported by Pahre, de Carvalho &
Djorgovski (1998b). For what concerns the intrinsic dispersion, we
find a value of σ i

FJ
∼ 0.09 dex in the optical, while Bernardi (2007),

find a smaller value of ∼0.07 dex.

7 FP SLO PES

7.1 Variation from g through K

Because of the large sample size and the wide wavelength baseline
provided by SDSS+UKIDSS, we can establish the waveband de-
pendence of the FP with unprecedented accuracy. Fig. 9 plots the
slopes of the FP in different wavebands, obtained for the magnitude-
and colour-selected subsamples of ETGs (Section 3.1). In each case,
we show the results of both the log σ 0 and orthogonal regression
procedures.

The slopes of the orthogonal fit are corrected for the magnitude
cut bias as described in Section 4.2. In the r band, the 2DPHOT

magnitude limit of the magnitude- and colour-selected samples of
ETGs are −20.55 and −20.60, respectively. We convert these val-
ues to model magnitude limits in r band at redshift z ∼ 0.025, and
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Figure 9. The log σ 0 slope, a, of the FP is plotted against the 〈μ〉e slope b. The left-hand panel shows the case where the same sample of ETGs is used
to derive the FP in all wavebands, while the right-hand panel exhibits the results obtained for the colour-selected samples (see Section 3.1). In each panel,
different colours denote different wavebands as shown in the lower left-hand corner of the figure. Filled and empty symbols mark the results of the orthogonal
and log σ 0 fits, respectively, with dashed and solid ellipses corresponding to 1σ confidence contours.

Table 6. Coefficients of the FP in grizYJHK from the orthogonal fit for the magnitude-selected sample of ETGs.

Band a b c sre si
re

g 1.384 ± 0.024 0.315 ± 0.001 −9.164 ± 0.079 0.125 ± 0.002 0.095 ± 0.003
r 1.390 ± 0.018 0.314 ± 0.001 −8.867 ± 0.058 0.112 ± 0.002 0.082 ± 0.002
i 1.426 ± 0.016 0.312 ± 0.001 −8.789 ± 0.053 0.110 ± 0.002 0.079 ± 0.002
z 1.418 ± 0.021 0.317 ± 0.001 −8.771 ± 0.072 0.111 ± 0.002 0.079 ± 0.003
Y 1.467 ± 0.019 0.314 ± 0.001 −8.557 ± 0.058 0.107 ± 0.002 0.081 ± 0.002
J 1.530 ± 0.017 0.318 ± 0.001 −8.600 ± 0.060 0.111 ± 0.001 0.083 ± 0.002
H 1.560 ± 0.021 0.318 ± 0.002 −8.447 ± 0.077 0.117 ± 0.002 0.087 ± 0.003
K 1.552 ± 0.021 0.316 ± 0.002 −8.270 ± 0.076 0.118 ± 0.002 0.089 ± 0.002

Table 7. Coefficients of the FP in grizYJHK from the log σ 0 fit for the magnitude-selected sample of ETGs.

Band a b c sre c′ s′
re

δre si
re

g 1.615 ± 0.032 0.297 ± 0.002 −9.275 ± 0.095 0.135 ± 0.002 −9.080 ± 0.002 0.128 ± 0.002 0.080 ± 0.001 0.100 ± 0.002
r 1.476 ± 0.029 0.298 ± 0.002 −8.726 ± 0.083 0.112 ± 0.001 −8.813 ± 0.002 0.115 ± 0.001 0.075 ± 0.001 0.087 ± 0.002
i 1.456 ± 0.027 0.296 ± 0.002 −8.517 ± 0.074 0.107 ± 0.001 −8.694 ± 0.002 0.111 ± 0.001 0.075 ± 0.001 0.082 ± 0.002
z 1.445 ± 0.026 0.299 ± 0.002 −8.477 ± 0.073 0.104 ± 0.001 −8.605 ± 0.002 0.108 ± 0.001 0.075 ± 0.001 0.078 ± 0.002
Y 1.435 ± 0.025 0.297 ± 0.002 −8.164 ± 0.073 0.099 ± 0.001 −8.353 ± 0.002 0.105 ± 0.001 0.066 ± 0.001 0.081 ± 0.002
J 1.508 ± 0.028 0.305 ± 0.002 −8.308 ± 0.085 0.103 ± 0.001 −8.195 ± 0.002 0.102 ± 0.001 0.062 ± 0.001 0.081 ± 0.002
H 1.474 ± 0.025 0.302 ± 0.002 −7.966 ± 0.074 0.105 ± 0.001 −7.991 ± 0.002 0.106 ± 0.001 0.068 ± 0.001 0.082 ± 0.002
K 1.484 ± 0.023 0.300 ± 0.002 −7.844 ± 0.072 0.106 ± 0.001 −7.872 ± 0.002 0.107 ± 0.001 0.067 ± 0.001 0.082 ± 0.002

then estimate the corresponding correction factors on a and b from
the polynomial curves in Fig. 2. Since we have selected either the
same sample of ETGs at all wavebands, or ETG’s samples with
equivalent magnitude limits (i.e. colour-selected samples, see Sec-
tion 3.1), we apply the same correction factors to all the grizYJHK
wavebands. Therefore, although the values of FP coefficients in a
given band depend on the correction factors, their relative variation
from g through K is essentially independent of them. For the log σ 0

fitting method, which is not affected from the magnitude cut (see
Section 4.2), no correction is applied. For both fitting methods, the
slopes are also corrected for the (small) effect of correlated errors
on effective parameters (Section 4.3), using the correction factors in
Table 3. For the magnitude-selected sample of ETG, the corrected
values of FP slopes are listed in Tables 6 and 7 for the orthogonal
and log σ 0 regression procedures, respectively. In Table 6, a and b
are the slopes, c and sre are the offset and the log re dispersion of
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the FP. Error bars denote 1σ standard errors. The quantity s i
re

is the
intrinsic dispersion of the relation along log re. In Table 7, a and b
are the slopes, c and sre are the offset and the log re dispersion of
the FP. Error bars denote 1σ standard errors. The quantities c and
s ′
re

are the offset and the scatter of the FP remeasured by fixing the
values of a and b in all wavebands. The quantity δre is the amount of
dispersion in the log re direction around the plane due to measure-
ment errors on effective parameters and velocity dispersion, while
s i
re

is the intrinsic scatter of the FP along the log re axis. For the
colour-selected samples, the coefficients are very similar to those
obtained for the magnitude-selected samples, and are not reported
here. These tables show how small the statistical uncertainties on
FP slopes are, amounting to only a few per cent in all wavebands.
Notice that the large number of ETGs makes the NIR FP coefficients
to have a much better accuracy than any previous study.

Both the magnitude- and colour-selected samples of ETGs ex-
hibit very similar trends in Fig. 9. For the log σ 0 fit, we do not see
any systematic variation of the FP with waveband. From r through
K, the values of a are consistent at less than 2σ . In g band, the
log σ 0 slope is larger than that in the other bands. The difference
between g- and r-band values of a is significant at ∼3σ , after the
corresponding uncertainties are taken into account.3 For what con-
cerns the coefficient b, all the values are very consistent. On the
contrary, the orthogonal regression exhibits a clear, though small,
variation of the slope a from g through K. The value of a is found
to vary from ∼1.38 in g to ∼1.55 in K, implying a 12 per cent
variation across the grizYJHK wavebands. The coefficient b does
not change with waveband. We analysed if these results can be af-
fected by the (small) contamination of the SPIDER sample from
early-type spirals. In Paper I, we showed that the contamination
from such systems is expected to be ∼13 per cent. We also defined
a subsample of ETGs with a lower contamination of ∼5 per cent.
Fig. 10 compares the FP slopes of the magnitude-selected sample
with those obtained by selecting only galaxies in the lower con-
tamination subsample. The values of a are fully consistent between
the two cases in all wavebands, while there is only a marginally
significant (∼2σ ) difference in b.

The values of a and b in Table 6 can be compared with those
obtained from previous studies using the orthogonal fitting proce-
dure. The r-band value of a is consistent, at 2σ , with that of a =
1.49 ± 0.05 found by BER03b, and with the value of a ∼ 1.434
reported by Hyde & Bernardi (2009). The value of a is larger, at the
2σ level, than that of a = 1.24 ± 0.07 found by JFK96. As noticed
by BER03b, the origin of such difference is still not understood,
although one may notice that it further reduces when considering
the value of a = 1.31 ± 0.07 found from JFK96 for ETGs in the
Coma cluster. For what concerns the coefficient b of the FP, its value
in r band (∼0.314) is consistent with that of 0.328 ± 0.008 found
by JFK96, and with the value of ∼0.316 from Hyde & Bernardi
(2009). On the other hand, BER03b report a somewhat lower value
of b = 0.300 ± 0.004. For what concerns the NIR FP, the values of
the slopes can be compared with those obtained from Pahre et al.
(1998a), who found a = 1.53 ± 0.08 and b = 0.316 ± 0.012, still
very consistent with our findings. The finding that b does not change
with waveband is in full agreement with what already suggested by
Pahre et al. (1998a).

3 To estimate the significance level, we add in quadrature the errors on
a for the two wavebands, assuming they can be treated as independent
uncertainties.

Figure 10. Effect of limiting the analysis to the sample of ETGs with lower
contamination from galaxies with residual disc-like morphological features
(see Paper I). Filled circles and solid ellipses refer to the results of the
orthogonal fitting procedure for the magnitude-limited sample of ETGs.
Dashed ellipses and empty circles are those obtained for the sample with
lower contamination (see the text). Ellipses denote 2σ error contours. The
FP coefficients turn out to be consistent between the two cases, from g
through K.

The above results on the waveband dependence of the FP extend
the findings of LBM08, who derived the FP in the r and K bands
for 1400 ETGs selected with similar criteria as in the present study.
For the orthogonal fit, LBM08 obtain a = 1.42 ± 0.05 and b =
0.305 ± 0.003 in r band, and a = 1.53 ± 0.04 and b = 0.308 ± 0.003
in K band. The values of a are fully consistent with those reported
in Tables 6 and 7, while the values of b are smaller, at 2.5σ , than
those we find here. This (small) difference is likely explained by the
different correction procedure adopted here with respect to that of
LBM08. In agreement with LBM08, we find that, when considering
the log σ 0 fit, one does not see any significant variation of FP slopes
with waveband. When comparing the orthogonal fit results in r and
K bands, LBM08 found a variation of only 8 ± 4 per cent (see
the values reported in their table 1). Here, considering the r- and
K-band values of a in Table 6, we find a variation of 11 ± 2 per cent.
The variation is even smaller, amounting to ∼8.5 per cent, when
considering the colour-selected samples of ETGs. Both values are
consistent, within the uncertainties, with those found by LBM08.

7.2 Dependence on velocity dispersion estimates

and magnitude range

As described in Paper I, two alternative velocity dispersion esti-
mates are available for the entire sample of ETGs, those retrieved
from SDSS DR6 and the new values we have measured by means
of STARLIGHT (Cid Fernandes et al. 2005). Fig. 11 compares the FP
slopes we derive in the different wavebands when using either one
or the other set of σ 0 values. Although we find a good agreement
among STARLIGHT and SDSS DR6 σ 0 values (see Paper I), the FP
slopes slightly change when using either one or the other source
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Figure 11. Effect of changing the method to derive velocity dispersions on
FP slopes. Filled and empty symbols are the values of FP slopes obtained by
using SDSS DR6 and STARLIGHT σ 0 values, respectively, for the magnitude-
selected sample of ETGs. Solid and dashed ellipses plot 2σ confidence
contours for the samples with SDSS DR6 and STARLIGHT velocity dispersions,
respectively. Different colours mark different wavebands, as in Fig. 9. Notice
that scales and labelling are the same as in Fig. 10.

of σ 0s. In particular, the value of a is systematically smaller for
STARLIGHT with respect to SDSS DR6. Averaging over all the wave-
bands, the difference amounts to ∼ −9 per cent. We notice that the
r-band value of a = 1.26 ± 0.03 from the STARLIGHT σ 0s matches
exactly the value of a obtained by JFK96 (see Section 7), implying
that the method to measure the σ 0 might be one main driver of the
differences in FP coefficients between BER03b and JFK96. Notice
also that the value of b is essentially independent of the velocity
dispersion estimates.

In order to analyse if the waveband dependence of the FP is sen-
sitive to the magnitude range where ETGs are selected, we proceed
as follows. First, we select all the ETGs in the SPIDER sample, with
photometry available in grizYJHK and reduced χ 2 smaller than 3.
This selection is the same as for the magnitude-selected sample
of ETGs (Section 2), but without applying any magnitude cut in r
band. The sample consists of 4981 galaxies. Fig. 12 compares the
FP slopes of the magnitude-selected sample of ETGs with those
obtained for the entire sample. The slopes of the FP are fully con-
sistent in all wavebands between the two cases. We also define two
subsamples consisting of all the ETGs with available photometry
in grizYJHK and r-band magnitude brighter that 0.07Mr = −21 and
−21.5, respectively. We exclude galaxies whose Sersic model fit
gives an high χ 2 value (>3). These 0.07Mr = −21 and −21.5 sub-
samples include N = 3411 and 2091 galaxies, respectively. Fig. 13
compares the slopes of the FP obtained for these two samples, by
the orthogonal fitting procedure, with those obtained for ETGs in
the magnitude range of 0.07Mr ≤−20.55. In order to allow a direct
comparison of the amounts of variation with waveband, for both
subsamples, the best-fitting values of a and b are rescaled to match
the values of a and b in the r band for the magnitude-selected sam-
ple. The figure clearly shows that the waveband dependence of the

Figure 12. Same as Fig. 10 but showing the effect of using the entire
SPIDER sample, rather than the magnitude-selected sample of ETGs, on
the waveband dependence of the FP. Notice that scales and labelling are the
same as in Fig. 10.

FP is essentially the same regardless of the magnitude range. For
0.07Mr ≤−21, the variation of a is smaller, but consistent within the
errors, with that obtained for 0.07Mr ≤−20.55. For 0.07Mr ≤−21.5,
the trend of a versus b matches very well that obtained for the entire
sample. In all cases, the log σ 0 coefficient increases from g through
K, while the value of b is independent of waveband.

7.3 Dependence on galaxy parameters

The FP relation and its dependence on waveband might change
when selecting samples of ETGs with different properties. To anal-
yse this aspect, we split the magnitude-selected sample accord-
ing to the value of different galaxy parameters, i.e. the axial ratio,
b/a, the Sersic index, n, the r − K colour index and the average
discy/boxiness parameter, a4. We utilize the values of b/a and n
in the r band, while for a4, we adopt its median value among the
gri wavebands (see Paper I). The r − K colour is computed from
2DPHOT total magnitudes.

Fig. 14 plots the slope a of the FP as a function of b. The slope’s
values are those obtained from the orthogonal fit, applying the same
correction factors as for the entire sample (Section 7.1). Each panel
corresponds to a given parameter p: a4, b/a, n and r − K. For each
parameter, the magnitude-selected sample of ETGs is splitted in
two subsamples, having values of p either lower or higher than a
given cut value, pc. For p = b/a, n and r − K, we set pc equal to
the median value of the distribution of p values. The median values
are pc = 0.699, 6.0 and 3.0 for b/a, n and r − K, respectively.
For a4, we divide the sample into discy (a4 > 0) and boxy (a4 <

0) galaxies. Notice that, for a given parameter, galaxies in the two
subsamples can populate different regions of the log re–〈μ〉e–log σ 0

space. For instance, because of the luminosity–size relation and
the KR, galaxies with higher Sersic index are brighter and tend
to have higher values of 〈μ〉e. This geometric difference might
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Figure 13. Effect of changing the magnitude limit on the waveband depen-
dence of the FP. The upper and lower panels plot as open circles, connected
by dashed segments, the FP slopes a and b obtained when applying dif-
ferent magnitude limits of 0.07Mr = −21 and −21.5, respectively. In both
panels, the results, obtained for the entire magnitude-selected sample, are
also shown, for comparison, as filled circles, connected by solid segments.
Different colours mark different wavebands, as in Fig. 9.

produce spurious differences in FP coefficients. A trivial example
of this geometric effect is the magnitude selection: the bias on
FP coefficients changes for samples of ETGs spanning different
luminosity ranges (Section 4.2). In order to minimize any geometric
difference, for a given parameter p, we extract the two subsamples
of ETGs by constraining their distributions in magnitude and 〈μ〉e

to be the same (see Appendix B for details).
Fig. 14 shows that the waveband dependence of the FP is similar

for all subsamples, i.e. the value of b tends to be constant while
the coefficient a increases by ∼15 per cent from g through K.
However, the FP slopes change significantly for samples of ETGs
with different properties. The differences can be summarized as
follows.

(1) Galaxies with higher n have a lower value of b; the value of
a in the NIR is smaller for the subsample with n > 6, while in the
optical both subsamples have consistent a.

(2) The FP of round galaxies (higher b/a) is more tilted (smaller
a) than that of galaxies with low b/a. The difference is more pro-
nounced in the NIR than in the optical.

(3) For a4 and r − K, one can notice a different behaviour. In the
NIR, the FP slopes of the two subsamples are fully consistent, while

in the optical, there is a detectable difference in the coefficient b.
Boxy and blue (i.e. r − K < 3) galaxies tend to have lower b.

We remark that all these trends remain essentially unchanged when
replacing SDSS DR6 with STARLIGHT velocity dispersions, with the
exception that a is slightly lower for STARLIGHT relative to SDSS σ 0

values (see Section 7.2).
Fig. 15 shows the FP slopes obtained for different subsamples

as in Fig. 14, but without imposing the constraint that, for a given
quantity, the two subsamples consist of galaxies with the same
distributions in magnitude and 〈μ〉e. No difference would have been
detected with respect to n and b/a, while a (spurious) difference in
the NIR value of a between red and blue galaxies would have been
found. The comparison of Figs 14 and 15 proves that accounting
for purely geometric differences in the space of FP parameters is of
paramount importance to correctly analyse the scaling relations of
different galaxy samples.

8 TH E E D G E - A N D FAC E - O N PRO J E C T I O N S

O F T H E FP

So far, we have analysed the waveband dependence of the FP, and
that of the FJ and KR. Since the FJ and KR are projections of the
FP, we expect their waveband dependence to be connected to that of
the distribution of galaxies in the FP. We establish this connection
by analysing the edge- and face-on projections of the FP.

Fig. 16 presents the so-called short edge-on projection of the FP,
from g through K, namely the combination of effective structural
parameters, log re − b〈μ〉e, as a function of log σ 0. This corresponds
to the FP along the shortest axis, whose slope is equal to its log σ 0

coefficient, a. Each panel in Fig. 16, for a given passband, shows the
FP obtained from the orthogonal fitting method (solid line), as well
as the r-band fitted FP (dashed line). From these plots we can see
the increasing of a from the optical through the NIR. Comparing
the solid and dashed lines we see that the increasing is quite small
(see Section 7.1). The observed scatter in the edge-on projection
decreases from the optical through the NIR, as it can be attested
from the values of the FP log re dispersion, sre , reported in Table 7.4

In order to represent the FP face-on projection, we follow the
same formalism as in Guzmán, Lucey & Bower (1993, hereafter
GLB93). We project the FP into a plane defined by two orthogonal
directions, one of which is perpendicular to the log re axis. The axes
of the projection are

X′ = (x0 log re + b′ log〈I 〉e + a log σ0)/
√

x0 (1 + x0), (6)

Y ′ = (a log〈I 〉e − b′ log σ0)/
√

x0, (7)

where b′ = −b × 2.5, x0 = a2 + (b′)2 and 〈I〉e is the mean surface
brightness in flux units, with 〈μ〉e = −2.5 log 〈I〉e. From the FP
equation and equation (6), it follows that X′ is simply proportional
to log re. Fig. 17 shows the distribution of ETGs on the face-on
projection of the FP in r band, together with the log re, 〈μ〉e and
log σ 0, directions, as well as the directions of increasing total mag-
nitude, MAG, and logarithmic luminosity, log L, on the face-on FP.
The dashed lines in the plot illustrate the σ 0 and magnitude selec-
tion limits of the sample (Section 2). As already noticed in previ-
ous studies (e.g. Bender, Burstein & Faber 1992; GLB93; JFK96),

4 We actually refer to the scatter values reported in Table 7 (and not those
reported in Table 6) as for the log σ 0 fitting procedure the FP slopes do not
change significantly with waveband, allowing a meaningful comparison of
the sre values from g through K.

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 408, 1335–1360



SPIDER – II. The FP in grizYJHK 1349

Figure 14. FP slopes, from g through K, for different subsamples of ETGs. Each panel shows the FP slopes obtained by splitting the magnitude-selected
sample of ETGs in two subsamples, according to the Sersic index (a), the axial ratio (b), the isophotal parameter, a4 (c) and the r − K colour index (d). For each
quantity, the two bins are defined as shown in the lower right-hand corner of the corresponding panel. The slope’s values are plotted with different symbols
and are connected through different line types for the two bins, as shown in lower right-hand corner of each plot. Different wavebands are represented with
different colours, as in Fig. 9. Ellipses denote 1σ confidence contours for a and b. To make the plot more clear, only the ellipses in g and K bands are shown.
Notice that scales and labelling of each panel are the same as in Fig. 10.

ETGs are confined in a small region of the face-on projection, only
partly due to selection effects. Galaxies populate a diamond-shaped
region, limited at low X′ by the magnitude limit of the sample,
Mr,lim = −20.55, and at high X′, by the bright-end knee of the
galaxy luminosity function, i.e. the fact that there are no galaxies
brighter than a magnitude threshold of about Mr,lim − 4. Notice that
the σ 0 selections (see Paper I and Section 2) do not affect the shape
of the distribution in the face-on projection, as all galaxies lie well
within the region defined by these additional cuts (dashed green
lines in the figure).

Since the log re and 〈μ〉e directions form almost a 90◦ angle
on the FP (see the blue and magenta arrows in the upper right of
Fig. 17), the KR is essentially reflecting the face-on distribution,
as already noticed by GLB93. In order to establish this connection,
we perform an orthogonal least-squares fit of the diamond-shaped
region, accounting for the magnitude selection in the X′–Y ′ plane
by the MLSO fitting procedure (see Section 5). The relation is

Y ′ = const + A′ X′, (8)

where A′ is the slope, and const is an offset. For the r band, we
obtain a best-fitting value of A′ = −1.08 ± 0.01. Since the log re

and 〈μ〉e directions are approximately orthogonal, the fitted line
is very similar to what we would obtain by binning the data with

respect to log re and take the median values of X′ and Y ′ in each of
those bins. The result of this binning procedure is shown by the
magenta circles in Fig. 17. The magenta line is the best fit of
the binned data points, with a slope of −1.01 ± 0.02, very close
to the MLSO fit reported above. The 2σ scatter of the MLSO fit,
along the X′, is displayed by a segment in the lower left of Fig. 17,
with the shorter segment corresponding to the 2σ log re dispersion
of the FP seen edge-on (Table 6). The scatter around the edge-on FP
is about twice smaller than that of the face-on FP as already noticed
by GLB93 implying that the FP is more like a band rather than a
plane, in the log re, 〈μ〉e, log σ 0 space. We can use equation (8) to
eliminate log σ 0 from the FP equation (equation 1). This leads to a
linear relation between 〈μ〉e and log re, similar to equation (2), i.e.
the KR, whose expected slope is

p′
2 = b

x0
− a A′

√
1 + x0

0.4x0
. (9)

Inserting the r-band value of the FP slope from Table 6 and the best-
fitting value of A′ in this equation, we obtain p′

2 = 3.56 ± 0.03, in
good agreement with the KR r-band slope, p2 ∼ 3.55, obtained by
the MLSB fit (see Table 4).

As far as the FJ relation, we notice that the log L and log σ 0 axes
form a small angle on the FP, and are almost orthogonal to the
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Figure 15. The same as in Fig. 14, but without matching the distributions in magnitude and mean surface brightness of subsamples in the two bins of a given
quantity.

direction of the long diagonal of the diamond-shaped region. As a
consequence, the best-fitting line of the face-on distribution cannot
be directly connected to the FJ, as we do for the KR. In fact, the FJ
relation almost coincides with the (short) edge-on projection of the
FP (e.g. GLB93). In order to overcome this problem and relate the
face-on distribution and the FJ relation, we bin the data with respect
to log L and then compute the median values of X′ and Y ′ in each
bin. This binning procedure allows us to look at the distribution of
galaxies in different luminosity bins, in the same way as for the FJ
relation. The log L-binned points are plotted as red circles in Fig. 17.
The corresponding linear best fitting is displayed as a red line. The
slope value of the red line amounts to A′

L = −0.72 ± 0.03. Notice
how the MLSO fit and the red line differ significantly. Replacing A′

with A′
L in equation (8), and combining the resulting equation with

the FP, we obtain a linear relation between log L and log σ 0, similar
to the FJ equation (equation 5), with an expected slope of

λ′
1 = a − b′ A′

L

√
1 + x0

a A′
L

√
1 + x0 + b′ + 2x0

. (10)

Inserting the value of A′
L and the FP coefficients in this equation

we obtain λ′
1 = 0.14 ± 0.01, very close to the measured slope of

the FJ relation in r band (λ1 = 0.19 ± 0.02, see Table 5). The
difference between λ1 and λ′

1 does not reflect any inconsistency in
the data, but just the fact that the log L and log σ 0 directions form a
small angle on the FP, and hence it is not straightforward to connect
the distribution of galaxies on the face-on projection to that on the

log L–log σ 0 plane. Equation (10) is used here as an empirical tool to
analyse the dependence of the FJ relation on waveband (see below).

Fig. 18 shows the face-on projections of the FP from g through K.
For each band, we have performed an MLSO fit of the data, as well
as a log L-binned fit, in the same way as we do in Fig. 17. For each
band, the corresponding slopes, A′ and A′

L, are reported in Table 8,
together with the predicted slopes of the KR, p′

2, and FJ relation,
λ′

1, from equations (9) and (10), respectively. From Table 8 we see
that the slope of the KR is expected to increase with waveband,
in agreement with what we measure (Section 5). This can be seen
directly from equation (9), as b does not change significantly with
waveband, and the same holds for the term

√
1 + X0/X0. It follows

that the waveband dependence of the KR slope is driven by the term
−a A′ (second term of equation 9). From the values of A′ in Table 8,
we see that −A′ increases with waveband, i.e. the MLSO fitted line
steepens with waveband, in the same way as a does (Section 7.1).
Therefore, the variation of the KR from g through K is connected to
the variation of both the slope, a, and the face-on projection of the
FP with waveband. The steepening of the MLSO fit from g through
K can be explained by the variation of optical to NIR radii along
the ETG’s sequence (Section 5), and considering the fact that X′ is
essentially proportional to log re.

For what concerns the FJ relation, the slope listed in Table 8 does
not change with wavelength, which is consistent with the results
presented in Section 6. Equation (10) explains the reason for this
behaviour. First, we notice that the FP slope, a, appears both in the
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Figure 16. Short edge-on projection of the FP (see Section 8), where the photometric quantity entering the FP, log re − b〈μ〉e, is plotted against the spectroscopic
quantity log σ 0. Different panels correspond to different passbands, from g (upper left) through K (lower right), as indicated in the upper left-hand corner of
each plot. In the short edge-on projection, the FP projects into a line, having a slope equal to the FP coefficient a. For each panel, this projection is shown by
the solid light-grey line. In order to emphasize the waveband dependence of a, in each panel we plot as a reference, with a dashed dark-grey line, the r-band
FP projection. Notice that the value of b, defining the y-axis variable changes among different panels, according to the values reported in Table 6. Notice that
for a more direct comparison of the FP projection in different wavebands, the lengths of the x- and y-axes are the same for all panels.

upper and lower part of the second term of equation (10). There-
fore, the waveband dependence of a does not affect the λ′

1 value.
Moreover, from Table 8, we see that the log L-binned slope of the
FP face-on distribution is independent of waveband, making the
value of λ′

1 constant from g through K. In other words, the face-on
distribution of the FP changes with waveband in a complex way, so
that the long diagonal of the diamond-shape region steepens with
waveband, while the log L-binned envelope of the distribution does
not change with waveband. The former effect, together with the
waveband variation of the FP coefficient, a, determines a depen-
dence of the KR on waveband, while the latter is consistent with
the FJ relation not changing from g through K.

9 ST E L L A R PO P U L AT I O N S A L O N G TH E F P

Under the homology assumption, one can combine the FP relation
(equation 1) with the virial theorem

σ 2
0 ∝ M

L
〈I 〉ere, (11)

and parametrize the mass-to-light ratio, M/L, as a function of two
variables out of M, L, σ 0, re and 〈I〉e (Djorgovski, de Carvalho & Han
1988). Here, we denote as 〈I〉e the mean surface brightness within re

in flux units. In order to analyse how stellar population parameters
vary along the sequence of ETGs, it is convenient to parametrize
such sequence by means of variables that are independent of stellar
population parameters. To this effect, we consider the quantities M
and σ 0, and write

M

L
∝ Mβx σ

αx
0 , (12)

where the index x runs over all the available wavebands (x =
grizYJHK). Using equation (1) and equation (11), one obtains the
following expressions for αx and βx:

αx = 4 − 0.4

(
ax + 2

bx

)
, (13)

βx = 0.4

bx

− 1, (14)

where ax and bx are the values of the log σ 0 and 〈μ〉e slopes of the
FP in the waveband x. These equations imply that at fixed σ 0

the variation of the M/L with mass is completely determined by
the coefficient b of the FP. On the contrary, at fixed M, the vari-
ation of M/L with velocity dispersion is determined by both the
values of a and b. Hence, the result that b does not change from g
through K (see Section 7) implies that, at fixed σ 0, the change of
M/L with mass is independent of waveband. On the contrary, the
dependence of M/L with σ 0 (at fixed M) changes from g through
K. This is shown in Fig. 19 where we plot the values of α and β

in the grizYJHK wavebands. For each band, we calculate α and
β from equations (13) and 14, using the FP coefficients obtained
by the orthogonal fitting procedure (see Table 6). The reason for
adopting the FP slope’s values from the orthogonal regression is
discussed in Section 9.1. As expected, the value of β is constant,
while α increases from g through K. Although the variation of a
from g through K amounts to only ∼12 per cent, the corresponding
increase in the α value is significant, amounting to ∼70 per cent.

One can also notice that the values of α and β have opposite
sign. Since the value of α is negative, at a given mass, the M/L is
a decreasing function of σ 0. On the contrary, for fixed σ 0, the
M/L increases with M. In order to characterize the overall variation
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Figure 17. Face-on projection of the FP in r band. The projection is such that the x-axis variable, X′, is proportional to log re, while the y-axis variable, Y ′,
is proportional to −〈μ〉e and log σ 0. The arrows in the upper right-hand corner of the plot denote the directions where the quantities, MAG, log σ 0, log L,
〈μ〉e and log re increase, where MAG is total galaxy magnitude, and log L is logarithmic luminosity in r band. The size of the arrows amounts to 0.5 dex,
1 mag arcsec−2, 3 mag and 0.5 dex for log σ 0, 〈μ〉e, MAG and log re, respectively. The red dashed lines correspond to the r-band magnitude limit, Mr,lim =
−20.55, and a bright-end limit four magnitudes brighter than Mr,lim, as shown by the corresponding labels. The green dashed lines correspond to the log σ 0

lower and upper selection limits of 70 and 420 km s−1. The solid cyan line is the MLSO best-fitting relation to the data (see the text). The thick solid black
line marks the exclusion zone, Y ′ = −0.59X′ + const, as originally defined by Bender, Burstein & Faber (1992). The intercept of this line has been arbitrarily
normalized to mark the upper envelope of the face-on projection of the FP. The presence of a few points above the line is likely due to measurement errors
on FP variables. The magenta and red circles are obtained by binning the data with respect to log re and log L, respectively, computing the median values
of X′ and Y ′ in each bin. The magenta and red solid lines are the best-fitting lines to the binned data points. The size of the 2σ scatter around the fit of the
face-on projection (cyan line) is given by the long segment in the lower left-hand corner of the plot. Notice how this segment is about twice larger than the
corresponding log re scatter of the FP, given by the short segment at lower left.

of M/L along the ETG sequence, parametrized in terms of galaxy
mass, we have to project equation (12), i.e. the FP itself, into the
M/L–M plane. To this effect, we can take advantage of a specific
projection of the FP, such as the FJ relation, i.e. the fact that lumi-
nosity is proportional to σ 0. In this approach, the FJ relation is not
providing any extra information with respect to the FP itself, but
is used as an empirical tool to project equation (12) into an M/L
versus M power law.5 Using equation (5) to replace σ 0 with L in
equation (12), for a given waveband X, we obtain

M/L ∝ Mγx , (15)

5 A different approach would be that of measuring directly dynamical mass
from the data, by means of the virial theorem. This approach (see e.g. JFK96)
relies on a given galaxy model to translate σ 0 and re into M, and hence
implies several assumptions about, for instance, the dark matter component
of ETGs. This analysis is currently under way for the SPIDER sample, and
will be presented in a forthcoming contribution. For the present study, we
adopt a model-independent approach, using only the information provided
by the FP.

where

γx = (βx + αx λ)

(1 + αx λ)
, (16)

and λ = 0.198 ± 0.007 is the average slope of the FJ relation
(Section 6). We point out that using the values of λ we have measured
for each waveband (see Table 5) rather than the average λ value
would not change at all the results presented here. The values of γ ,
derived with the above procedure, are reported in Table 9 (column
2) for each waveband. The γ has a positive value in all wavebands,
and tends to slightly decrease, by 20 ± 5 per cent, from g to K.
This variation can be interpreted as a change of stellar population
properties along the sequence of ETGs. To this effect, following the
same approach of LBM08, we assume that also the stellar mass-to-
light ratio of ETGs, M∗/L, is a power law of M:

M∗/L ∝ Mγ ∗
x . (17)

Equation (12) can then be written as

M/L ∝ Mγ ′+γ ∗
x , (18)
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Figure 18. The same as Fig. 17 for the grizYJHK wavebands, from left to right, and top to bottom. For better displaying the plots, the internal labels of Fig. 17
are not shown. Panel (b) is the same as Fig. 17 and is repeated to allow a direct comparison with the other panels (wavebands). Notice that for a more direct
comparison of the face-on projection in different wavebands, the lengths of the x- and y-axes are the same in all panels.

Table 8. Slopes of the face-on projection of the FP, A′ and A′
L, and predicted

slopes of the FJ and KR, λ′
1 and p′

2.

Band A′ (fit) A′
L p′

2 λ′
1

g −1.05 ± 0.01 −0.77 ± 0.03 3.48 ± 0.02 0.11 ± 0.01
r −1.08 ± 0.01 −0.72 ± 0.03 3.56 ± 0.03 0.14 ± 0.01
i −1.07 ± 0.01 −0.69 ± 0.03 3.51 ± 0.03 0.15 ± 0.01
z −1.09 ± 0.01 −0.78 ± 0.04 3.54 ± 0.03 0.10 ± 0.02
Y −1.14 ± 0.02 −0.67 ± 0.04 3.64 ± 0.05 0.16 ± 0.02
J −1.18 ± 0.02 −0.68 ± 0.03 3.66 ± 0.06 0.14 ± 0.02
H −1.17 ± 0.02 −0.73 ± 0.04 3.67 ± 0.06 0.13 ± 0.01
K −1.24 ± 0.01 −0.70 ± 0.04 3.83 ± 0.04 0.14 ± 0.01

where γ ′ = γx − γ ∗
x defines how the ratio of stellar to total mass

changes along the mass sequence of ETGs, M∗/M ∝ M−γ ′
and

thus it is assumed to be independent of waveband. Introducing the
parameter f = γ ∗

K/γK , which defines the fraction of the K-band
slope of the M/L versus M relation due to stellar population effects,

we obtain the following system of equations:(
1 − f

f

)
γ �

K + γ �
x = γx. (19)

We note that f can vary between 0 and 1. For f = 0, the K-band
tilt is independent of stellar populations (γ ∗

K = 0), while for f = 1
the tilt is entirely explained by stellar population effects (γ ∗

K = γK

and γ ′ = 0). The quantities γ ∗
x depend on how stellar population

properties change along the mass sequence of ETGs. Considering
only the age, t, and the metallicity, Z, one can write

γ ∗
x = δ(log M∗/L)

δ(log M)
= ctx

δ(log t)

δ(log M)
+ cZx

δ(log Z)

δ(log M)
, (20)

where the quantities δ(log t) and δ(log Z) are the logarithmic differ-
ences of age and metallicity between more and less massive galax-
ies (per decade in mass), while ctx = (∂ logM∗/Lx)/(∂ log t) and
cZx = (∂ logM∗/Lx)/(∂ log Z) are the partial logarithmic deriva-
tives of M∗/L (in the waveband x) with respect to t and Z. Deriving
the coefficients γ x from the slope’s values of the FP in the different
wavebands (equations 13, 14 and 16), and inserting the expression
of γ ∗

x from equation (20) into equation (19), we obtain a system of
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Figure 19. Slopes, α and β, of the power law of M/L as a function of σ 0

and M in the grizYJHK wavebands. Solid and dotted ellipses denote 1σ and
2σ confidence contours, respectively, as implied by the uncertainties on FP
coefficients (see Table 6).

Table 9. Slopes of the M/L versus mass relation, obtained by projecting
the FP through the FJ relation (column 2), by using STARLIGHT (rather than
SDSS) σ 0s (column 3) and fitting the γ to the FP coefficients rather than
using the FJ relation (column 4).

Waveband γ

SDSS σ 0s STARLIGHT σ 0s α–β fit
(1) (2) (3) (4)

g 0.224 ± 0.008 0.251 ± 0.009 0.249 ± 0.008
r 0.225 ± 0.006 0.253 ± 0.007 0.248 ± 0.007
i 0.221 ± 0.006 0.247 ± 0.006 0.254 ± 0.007
z 0.213 ± 0.008 0.236 ± 0.006 0.233 ± 0.007
Y 0.208 ± 0.007 0.230 ± 0.007 0.227 ± 0.007
J 0.186 ± 0.007 0.202 ± 0.008 0.215 ± 0.008
H 0.180 ± 0.009 0.221 ± 0.007 0.208 ± 0.007
K 0.186 ± 0.009 0.218 ± 0.007 0.214 ± 0.008

eight equations, one for each of the grizYJHK wavebands, in the
three unknowns δ(log t), δ(log Z) and f . We solved this system by
minimizing the sum of relative residuals:

χ 2 =
∑

x

[
(1 − f )/f γ �

K + γ �
x − γx

γx

]2

. (21)

We estimated the quantities ct,x and cZ,x using simple stellar pop-
ulation (SSP) models from different sources: Bruzual & Charlot
(2003) (BC03), Maraston (2005) (M05) and Charlot & Bruzual (in
preparation) (CB10). These models are based on different synthe-
sis techniques and have different IMFs. The M05 model uses the
fuel consumption approach instead of the isochronal synthesis of
BC03 and CB10. The CB10 code implements a new AGB phase
treatment (Marigo & Girardi 2007). The IMFs are Scalo (BC03),
Chabrier (M05) and Salpeter (CB10). Moreover, we also used a
composite stellar population model from BC03 having exponential
star formation rate (SFR) with e-folding time of τ = 1 Gyr (hereafter

Table 10. Age and metallicity differences per decade of galaxy mass.

MODEL t (Gyr) Z/Z δ(log t) δ(log Z)

BC03 12 1 0.013 ± 0.021 0.104 ± 0.026
BC03 9 1 0.013 ± 0.017 0.105 ± 0.025
BC03 12 1.5 0.004 ± 0.001 0.106 ± 0.019
CB10 12 1 0.003 ± 0.021 0.121 ± 0.022
CB10 9 1 0.005 ± 0.025 0.121 ± 0.026
CB10 12 1.5 −0.019 ± 0.004 0.150 ± 0.027
M05 12 1 0.008 ± 0.018 0.112 ± 0.025
M05 9 1 0.012 ± 0.023 0.108 ± 0.022
M05 12 1.5 0.005 ± 0.001 0.094 ± 0.017

BC03τ =1 12 1 0.011 ± 0.012 0.107 ± 0.023
BC03τ =1 9 1 0.012 ± 0.014 0.107 ± 0.025
BC03τ =1 12 1.5 0.006 ± 0.001 0.100 ± 0.018

BC03τ =1). The models are folded with the grizYJHK throughput
curves, and the M/L values computed for different values of t and Z.
In order to evaluate the impact of changing t and Z, we considered
three cases, with (i) an age of 9 Gyr and solar metallicity, (ii) an
older age of 12 Gyr and solar metallicity and (iii) an age of 12 Gyr
and supersolar metallicity (Z = 1.5 Z). The minimization was
performed 2000 times for each kind of model, and for each com-
bination of t and Z values, shifting each time the FP coefficients
according to the corresponding (correlated) uncertainties. For each
iteration, we found that all the eight equations were solved with an
accuracy better than 10 per cent.

Fig. 20 plots δ(log t) versus δ(log Z), as well as the distribution of
f values obtained in each case for all the 2000 iterations. For almost
all solutions, the f is very close to zero, implying that the tilt of
the NIR FP is not due to a variation of stellar population properties
of ETGs with mass. For instance, in the case t = 9 Gyr and solar
metallicity, the percentages of solutions with f < 0.05 amounts to
94, 82, 95 and 94 per cent for the BC03, CB10, M05 and BC03τ =1

models, respectively. Considering only the solutions with f < 0.05,
we estimated the mean value of δ(log t) and δ(log Z). The mean val-
ues, and the corresponding uncertainties, are reported in Table 10.
The uncertainties were estimated by the standard deviation of the
δ(log t) and δ(log Z) values obtained for a given model and for a
given combination of t and Z. The mean values do not depend sig-
nificantly on either the model or the adopted values of t and Z. On
average, δ(log t) is very close to zero, while the δ(log Z) mean value
amounts to ∼0.1 dex. This implies that ETGs have synchronous
luminosity-weighted ages, with an age variation smaller than a few
per cent per decade in mass, while the metallicity variation per mass
decade amounts to ∼23 per cent. These results remain unchanged
when using STARLIGHT rather than SDSS velocity dispersions. In-
serting the values of FP coefficients and FJ slope as estimated by
STARLIGHT (rather than SDSS) σ 0s in equation (16), the values of the
γ s increase on average by ∼12 per cent, as shown by comparing
the values in column 3 (STARLIGHT) and column 2 (SDSS) of Table 9.
For instance, the value of γ g changes from 0.224 (SDSS) to 0.251
(STARLIGHT), while in K band the γ varies from 0.186 (SDSS) to
0.218 (STARLIGHT). Applying the procedure described above to es-
timate f , δ(log t) and δ(log Z), we find that, for BC03 SSP models
with an age of 9 Gyr and solar metallicity, the corresponding dis-
tribution of f values is still strongly peaked around zero, while the
mean values of δ(log t) and δ(log Z) amount to ∼0.008 and ∼0.100,
respectively, fully consistent with what obtained from SDSS σ 0s
[δ(log t) ∼ 0.013 and δ(log Z) ∼ 0.105, see Table 10]. As a further
test, we estimated the γ s by not using the FJ relation. Combining
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Figure 20. Best-fitting values of δ(log t), δ(log Z) and f values. The left-
hand panels plot δ(log t) versus δ(log Z) for the BC03, CB10, M05 and
BC03τ =1 SSP models (from top to bottom). Different colours denote the
different combinations of t and Z as shown in the upper right-hand corner of
the top panel. For a given panel and colour, the different points correspond
to the solutions obtained in the 2000 minimization iterations. The solutions
corresponding to f < 0.1 are plotted with larger symbols. The right-hand
panels plot the corresponding distributions of f values. To make the plot
more clear, small shifts (of ±0.05) have been applied to the histograms with
different colours.

equation (17) with the virial theorem, we obtain the equation

log re ∝ 2
1 − γx

1 + γx

log σ0 + 0.4

1 + γx

〈μ〉e, (22)

which reduces to the FP for ax = 2(1 − γ x)/(1 + γ x) and bx =
0.4/(1 + γ x). For each waveband, we estimate the γ x by minimizing

the expression

χ 2 =
(

ax − 2
1 − γx

1 + γx

)2

/(δax)2 +
(

bx − 0.4

1 + γx

)2

/(δbx)2,

(23)

where ax and bx are the FP coefficients from Table 6, and δax and
δbx are the errors on ax and bx. The corresponding values of γ x are
reported in Table 9 (column 4). On average, the values of γ x tend to
increase, with respect to those from equation (16), by ∼13 per cent.
Even in this case, this variation does not impact at all the above
conclusions, i.e. the f is zero, while the mean values of δ(log t) and
δ(log Z) amount to about 0.01 and 0.1 dex, respectively.

10 DI SCUSSI ON

10.1 The fit of the FP in different wavebands

One of the crucial aspects of the present study is the fitting pro-
cedure used to obtain the coefficients of the FP and how they are
affected by different systematic effects. Different fitting techniques
produce different estimates of FP coefficients, and may lead to
erroneous results when comparing the FP relations obtained with
different samples (LBC00; Saglia et al. 2001; BER03b). To avoid
this problem, we adopt the same fitting method for all the ETG
subsamples we analyse. Selection effects and correlated errors on
effective parameters can be taken into account analytically under
the assumption that the FP variables are normally distributed (Saglia
et al. 2001). Although BER03b showed that the joint distribution of
log re, log σ 0 and galaxy magnitude is relatively well described by
a multivariate Gaussian, this might not necessarily be true when ef-
fective parameters are derived by the Sersic (2DPHOT) rather than de
Vaucouleurs (PHOTO) model. These two pipelines yield significant
differences in log re and magnitudes (see Paper I). These differ-
ences depend on galaxy magnitude, and may be partly due to the
sky overestimation problem affecting the SDSS PHOTO parameters.
We have adopted a non-parametric approach, first fitting the FP re-
lation and then correcting the slopes for different systematic effects
using extensive Monte Carlo simulations. We find that the main
source of bias on the FP slopes is the magnitude cut. In agreement
with Hyde & Bernardi (2009), we show that for the orthogonal
fit this cut leads to underestimating the FP coefficients, with the
effect becoming negligible only at faint magnitude limits (Mr ∼
−18.5, see Fig. 2). The effect is negligible when we use the log σ 0

fitting method. As shown by LBC00, minimizing the log σ 0 resid-
uals leads to a log σ 0 slope of the FP systematically higher than
that obtained by other fitting techniques (see also JFK96). We also
find that the coefficient a of the FP in the optical (SDSS) wave-
bands are systematically larger when we use the log σ 0 method
compared to results obtained with the orthogonal fitting procedure.
In r band the difference amounts to ∼6 per cent. On the other hand,
the coefficient b turns out to be systematically lower, by ∼5 per
cent, for the log σ 0 method (see Tables 6 and 7). Another important
result we find is that the difference produced by different fitting
method depends on waveband (see also LBM08). The FP coef-
ficients do not change with the waveband when using the log σ 0

method, while they smoothly vary, by ∼12 per cent, from g through
K when using the orthogonal method. This can be explained by
the fact that the log σ 0 regression minimizes the rms of residuals
in the perpendicular direction to the log re–〈μ〉e plane, and hence it
is less sensitive to differences in the distribution of galaxies in that
plane, like those among effective parameters measured in different
wavebands. The problem of deriving the best-fitting coefficients of
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correlations among astrophysical quantities has been addressed by
Isobe et al. (1990). They concluded that, in case one aims to study
the underlying functional relation among the variables, regression
procedures treating all the variables symmetrically, like the orthog-
onal method, should be adopted. For this reason, we have analysed
the implications of the waveband dependence of the FP adopting
the results of the orthogonal regression.

10.2 Variation of rOPT/rNIR with galaxy radius

In the present study, we find that the slope of the KR exhibits a
small systematic variation with waveband, steepening by ∼10 per
cent from g through K. This variation may be explained as the ra-
tio of optical to NIR effective radii decreasing for galaxies with
larger re, namely, while smaller size ETGs have, on average, opti-
cal radii larger than the NIR ones, the most massive galaxies have
rOPT ∼ rNIR . In the assumption that rOPT/rNIR is a proxy for the inter-
nal colour gradient of an ETG, this finding implies that the stellar
populations of the most massive ETGs have a more homogeneous
spatial distribution inside the galaxies, i.e. flatter radial gradients,
than less massive systems. Spolaor et al. (2009) found that the rela-
tion between the internal metallicity gradient and mass in early-type
systems is bimodal, with a sharp transition at MB ∼ −19. This mag-
nitude corresponds approximately to the lower cut applied to the
SPIDER sample (Paper I). For MB > −19, ETGs exhibit a tight
correlation between the metallicity gradient and either mass, lumi-
nosity or log σ 0. Brighter galaxies tend to have steeper gradients, as
expected by the lower efficiency of feedback processes in less bound
(massive) systems (Larson 1974). At higher mass, colour gradients
exhibit a larger scatter, with no sharp dependence on galaxy mass.
It is currently not clear how the results of Spolaor et al. (2009) can
be reconciled with the variation in the ratio of effective radii with
radius we find here. In fact, colour gradients are also determined
by the change in the profile shape (i.e. the Sersic index), besides
radius, with waveband. Moreover, both metallicity and (small) age
gradients can combine to produce the observed internal colour gra-
dients of ETGs (see La Barbera & de Carvalho 2009). The trend
of rOPT/rNIR with rNIR is consistent with a recent finding by Roche,
Bernardi & Hyde (2009), who analysed how the ratio of effective
radii measured in g and r (using SDSS) correlate with several galaxy
properties, for different families of ETGs (normal E/S0 galaxies and
BCGs). Although limited to the optical regime, they find that the
mean ratio of radii measured in g and r become flatter for larger
galaxies (Fig. 7). The trend of rOPT/rNIR can be explained by the
increasing importance of dissipationless mergers in the formation
of more massive galaxies with galaxy mass. Indeed, dry mergers
are expected to wash out internal differences of stellar population
properties in galaxies (White 1980; di Matteo et al. 2009). A ma-
jor role of dry mergers in the formation of massive ETGs has also
been suggested, in a theoretical framework, by Naab, Khochfar &
Burkert (2006) and de Lucia et al. (2006, hereafter deL06).

10.3 The FP from g through K

LBM08 derived the FP relation in the r (SDSS) and K (UKIDSS)
wavebands, showing that the FP slopes exhibit only a small variation
with waveband, and that this variation is degenerate with respect to
(i) the gradients of stellar population properties (i.e. age and metal-
licity) with galaxy mass, δ(log t)/δ(log M) and δ(log Z)/δ(log M),
and (ii) the fraction of the FP tilt, f , which is caused by stellar
populations. One main result of the present study is that using the

grizYJHK coefficients of the FP we are able to break this degen-
eracy. The resulting probability distribution of f is sharply peaked
around zero, implying that the tilt of the FP in the NIR is not due to
stellar populations. This result is in agreement with that of Trujillo
et al. (2004), who found that the slope of the M/L versus luminosity
relation in K band can be entirely due to structural non-homology
of ETGs (see also Busarello et al. 1997; Graham & Colless 1997).
In B band, they found that a minor but still significant fraction
(one-quarter) of the tilt is due to stellar populations. The results of
Trujillo et al. (2004) contrast those of Bolton et al. (2007), who
argued that the tilt is more likely caused by a variation of the dark
matter content with mass, with stellar populations playing a minor
role, which fully agrees with our finding. Recently, Jun & Im (2008)
have derived the FP relation for a sample of 56 ETGs in the visible
(V), NIR (K) and mid-infrared (MIR) [Spitzer Infrared Array Cam-
era (IRAC)] wavelengths and concluded that the slope a of the FP
increases with the waveband. However, the uncertainties (see their
table 2) seem to be still too large to conclude if a increases even
further in the MIR wavebands.

Spectroscopic studies of stellar population properties in ETGs
have found that the (luminosity-weighted) age of ETGs tends to
increase along the galaxy sequence, as parametrized in terms of ei-
ther velocity dispersion or stellar and dynamical mass (e.g. Thomas
et al. 2005; Gallazzi et al. 2006). The ages are usually estimated
comparing line spectral indices with the expectations from stellar
population models. In particular, Gallazzi et al. (2006) found that
the slope of the log t versus log M relation is 0.115 ± 0.056 (see their
table 4). This value is estimated for a sample of ETGs with a dynam-
ical mass M >̃ 1010 M, with a limiting magnitude comparable to
that we adopt here in this work. The value of δ(log t)/δ(log M) from
Gallazzi et al. (2006) is significantly larger than what we obtain here,
although still marginally consistent within 2σ (Table 10). Moreover,
we have to consider that age and metallicity values from spectro-
scopic studies always refer to the central galaxy region. Aperture
corrections are based on measurements of line spectral indices for
small samples of ETGs at z ∼ 0 and apply only to a relatively
small radial range, with R < Re (see Jørgensen 1997). Gallazzi et al.
(2006) adopt a different approach and instead of correcting the in-
dices, test how the stellar population parameters vary with redshift,
up to z ∼ 0.12, for galaxies with similar physical properties (e.g.
dynamical mass). The main drawback of this approach is that it
relies on the assumption that spectral indices and their gradients do
not evolve with redshift. Considering the redshift range (z < 0.12),
large galaxies are still observed only in a radial region of R <̃ Re.
The values of δ(log t)/δ(log M) and δ(log Z)/δ(log M) we obtain
from the FP analysis describe the total stellar population content of
ETGs, as the photometric parameters entering the FP are defined in
terms of the total galaxy luminosity of the 2D Sersic model. The
information encoded in the FP is more similar to that provided by
the CM relation, where galaxy colours are usually measured within
a larger aperture than that sampled by spectroscopic studies. In fact,
in agreement with our findings, Kodama et al. (1998) showed that
the small redshift evolution of the CM relation implies that (i) all
the (luminous) ETGs are equally old and (ii) more massive galaxies
are more metal rich than less massive systems.

In the framework of the Spectrographic Areal Unit for Research
on Optical Nebulae (SAURON) project, for a sample of 25 ETGs,
Cappellari et al. (2006) found that the variation of the dynamical
M/L is well correlated with the Hβ line strength, implying that most
of the tilt of the FP (i.e. the deviation of FP coefficients from the
virial theorem expectation under the assumption of homology and
constant M/L) is indeed due to galaxy age varying with mass. This
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result apparently contrasts with findings of Trujillo et al. (2004)
and Bolton et al. (2007), and with our results, where both f and
δ(log t)/δ(log M) are consistent with zero. However, as also noticed
by LBM08, 68 per cent of the galaxies in the Cappellari et al. (2006)
sample are fast rotators and 20 per cent have low velocity disper-
sion (σ = 60–85 km s−1). Zaritsky, Gonzalez & Zabludoff (2006)
and D’Onofrio et al. (2008) have found that the FP of spheroidal
systems depends on the covered range in mass and velocity dis-
persion (see also Graham & Guzmán 2008 and references therein),
with the tilt becoming larger (smaller a) for galaxies in the low σ 0

regime. Jeong et al. (2009) derived the near-ultraviolet (NUV) and
far-ultraviolet (FUV) FP of 34 ETGs from the SAURON sample.
They showed that the tilt is significantly affected by residual star
formation in ETGs, mostly found at low σ 0 ( <̃ 100 km s−1). Hence,
the above-mentioned disagreement with the findings of Cappellari
et al. (2006) might be explained by the different range of veloc-
ity dispersion and different selection criteria of both samples. It
is important to remember, as we have shown in Section 7.3, that
different subsamples of ETGs do not share the same FP relations.
When binning the SPIDER sample according to Sersic index and
axial ratio, we find that the tilt of the FP becomes larger (i.e. the
slopes of the FP decrease) by a small but detectable amount for
galaxies with higher n and larger b/a, with the effect being mainly
due to a difference in the b coefficient of the FP. The result for n
is consistent with D’Onofrio et al. (2008), who found that in the
optical regime the b coefficient decreases significantly as the Sersic
index increases, while a is constant. However, one should notice
that D’Onofrio et al. (2008) did not account for the fact that galax-
ies in different bins of n have different distributions in the space of
the FP variables, and, as we show in Section 7.3, this might prevent
a proper comparison of FP coefficients. The fact that the variation
of the FP tilt among galaxies with different n and b/a is similar
from g through K suggests that it is more related to differences of
galaxy properties (structural and dynamical), rather than to differ-
ences in the galaxy stellar population content. Kelson et al. (2000)
derived the FP of 56 ellipticals, lenticulars and early-type spirals
in the cluster environment at redshift z ∼ 0.3. In agreement with
JFK96, they found that the FPs of Es and S0s have consistent slopes.
They also found that the FP of early-type spirals has a larger tilt
(smaller a) with respect to that of ETGs, likely due to a variation
of the luminosity-weighted age with galaxy mass. This result might
explain what we find when binning the SPIDER ETGs according to
their optical–NIR colours and the discy/boxy parameter a4. Galax-
ies with bluer colours and more pronounced disc-like isophotes tend
to have a more tilted FP (mainly because of a smaller b), with this
effect smoothly disappearing from g through K.

10.4 Comparison to semi-analytical models of galaxy

formation

Explaining the stellar population properties of ETGs is a lingering
problem for theories of galaxy formation and evolution. In the hier-
archical scheme of galaxy formation, larger systems assemble their
mass at later times. Hence, if star formation closely follows the
mass assembling, one would naively expect more massive galaxies
to have younger stellar populations, in evident disagreement with
(i) the red colours and old stellar populations characterizing the
massive ETGs, and (ii) the observed bimodality of galaxies in the
CM diagram (Strateva et al. 2001). As shown by Kauffmann (1996),
SAMs of galaxy formation in the cold dark matter (CDM) frame-
work can account for point (i) because more massive systems are
indeed those forming stars at higher redshift. For massive galax-

ies, the galaxy bimodality is also reproduced, by preventing cooling
flows in the centre of dark matter haloes. This is achieved with some
ad hoc recipe, like the feedback from active galactic nuclei (AGN;
Croton et al. 2006). As a result, both the luminosity-weighted age
and metallicity of ETGs increase from lower to higher mass systems
(see fig. 6 of deL06). Since the grizYJHK FP sets strong constraints
on the variations of age and metallicity with galaxy mass, the natural
question is if the amount of such variations can be accommodated in
the framework of current models of galaxy formation. Fig. 21 com-
pares the logarithmic variation of age and metallicity per decade
in stellar mass, δ(log t)/δ(log M�) and δ(log Z)/δ(log M�), that we
infer from the FP6 (Section 9) and the expectation from SAMs.
The plot shows the variation of the mean luminosity-weighted age
and stellar metallicities as a function of galaxy stellar mass, M�,
of model elliptical galaxies for the SAM of deL06 (black circles),
and that of Wang et al. (2008), where the latter model has been up-
dated according to the 3-yr Wilkinson Microwave Anisotropy Probe
(WMAP3) cosmology. Interestingly, we see that current SAMs are
actually able to match the results obtained from the analysis of the
FP from g through K. Massive ETGs (>M� ∼ 2 × 1010) have essen-
tially coeval stellar populations, with more massive galaxies being
slightly more metal rich, by a difference in metallicity of ∼0.1 dex
per decade in mass, than less massive systems.

In a forthcoming paper, we will continue the analysis of scaling
relations of ETGs, by presenting the dependence of the FP from
g through K as a function of the environment where galaxies re-
side, and discussing the implications for current models of galaxy
formation and evolution.

1 1 S U M M A RY

In this contribution, we present a thorough analysis of the FP of
ETGs using a homogeneous data set obtained in two wide-sky
surveys (SDSS DR7 and UKIDSS-LAS). As far as the FP derivation
is concerned, we discuss fitting procedure, bias due to selection
effects, bias due to correlated errors on re and 〈μ〉e and how to
obtain meaningful FP coefficients. Below we summarize some of
the main findings of this paper.

(i) We examine the KR for all the wavebands available and find
a smooth increase in slope from g (∼3.44 ± 0.04) to K (∼3.80 ±
0.02), while the scatter seems to be independent of the waveband.
Although the KR is just a projection of the FP relation, these results
serve as a benchmark at the nearby Universe and will be essential
for studies of ETGs at high redshift, for which not always large
samples exist to probe the FP. In agreement the waveband variation
of the KR slope, we find that the ratio of effective radii measured in
g to that measured in K, (re,g/re,K), decreases as re,K increases.

(ii) We measure the waveband dependence of the FP with un-
precedented accuracy. The trends of the FP coefficients, a and b
(see equation 1), with waveband are all very consistent regardless
of the sample used (magnitude- or colour selected). When using the
log σ 0 fit, we find that a is consistent, within 2σ , from r to K and
for g band a differs significantly by ∼3σ , while b is all very con-
sistent. Using the orthogonal fit, however, a significantly varies by
12 per cent from g through K and b does not change at all.

6 The quantities δ(log t)/δ(log M�) and δ(log Z)/δ(log M�) are computed
from the values of δ(log t)/δ(log M) and δ(log Z)/δ(log M) reported in
Table 10, and the relation δ(log M) = δ(log M�)/(1 − γ K ), that holds for
f = 0 (see Section 9).
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Figure 21. Comparison of the variation of age (upper panel) and metallicity
(lower panel) with stellar mass from the grizYJHK FP and the predictions
of semi-analytical models (SAMs) of galaxy formation. Black circles and
error bars are the same as in fig. 6 of deL06, and represent median values of
luminosity-weighted age and stellar metallicities of model elliptical galaxies.
Black error bars link the upper and lower quartiles of the age and metallicity
distribution in a given bin of stellar mass. The magnitude limit of the SPIDER
sample corresponds to a stellar mass limit of ∼2 × 1010 M, marked in
the plot by the vertical dashed line. The blue circles are the peak values
of the distributions of luminosity-weighted ages and stellar metallicities for
model elliptical galaxies from the updated SAM of Wang et al. (2008),
where the WMAP3 cosmology (rather WMAP1 as in deL06) is adopted. The
peak values are computed by the bi-weight estimator. Error bars denote 2σ

uncertainties on peak values. Model ellipticals are selected as those objects
in the SAM with a stellar mass fraction in the bulge larger than 80 per cent,
and colour index g − r > 0.5 (consistent with the distribution of ETG’s
colours for the SPIDER sample, see Paper I). Ages refer to redshift z = 0,
for both models. The red lines are the result of the analysis of Section 9.
Their offset is arbitrarily chosen to match the models, while the slope’s are
obtained from the values of δ(log t)/δ(log M) and δ(log Z)/δ(log M) reported
in Table 10 for the BC03 model, with t = 12 Gyr and Z/Z = 1.

(iii) The analysis of the face-on and edge-on projections of
the FP indicates, first of all, consistency with the results obtained
when examining the FJ and KR. Moreover, the scatter around the
edge-on projection is about twice smaller than that of the face-
on’s, indicating that the FP is more like a band rather than a
plane.

(iv) We test the sensitivity of the FP solution to the veloc-
ity dispersion measurement used, log σ 0 (STARLIGHT) versus log σ 0

(SDSS DR6). Although these two measurements agree remark-
ably well, the value of a is systematically smaller when using
the STARLIGHT values of log σ 0, while b is insensitive to both mea-
surements. Furthermore, we find that the waveband dependence of
the FP is the same regardless of the magnitude range used in the
analysis.

(v) The sample analysed is formed by ETGs covering a certain
domain in galaxy properties, like axial ratio (b/a), Sersic index (n),
r − K colour and a4. The FP slopes vary significantly for ETGs with
different properties in the following way: ETGs with larger n have
lower b; a is smaller in the NIR for the n > 6 subsample and in the
optical both subsamples have similar as; The FP of round galaxies
has smaller a (and smaller b) than the FP obtained for lower b/a
ETGs – the difference is more evident in the NIR. Furthermore,
boxy and bluer (r − K) ETGs exhibit an FP with lower b, with this
difference disappearing in the NIR wavebands.

(vi) Finally, we show that current SAMs of galaxy formation
match the results here obtained from the analysis of the FP tilt
from g through K. This analysis implies that the NIR tilt of the
FP is not due to stellar populations: massive ETGs have coeval
stellar populations, and are more metal rich than less massive sys-
tems. This is one of the crucial points of the FP study presented
here.
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Cid Fernandes R., González Delgado R. M., Storchi-Bergmann T., Martins
L. P., Schmitt H., 2005, MNRAS, 356, 270

Ciotti L., Lanzoni B., 1997, A&A, 321, 724
Ciotti L., Lanzoni B., Renzini A., 1996, MNRAS, 282, 1
Croton D. J. et al., 2006, MNRAS, 365, 11
Dantas C. C., Capelato H. V., Ribeiro A. L. B., de Carvalho R. R., 2003,

MNRAS, 340, 398
de Lucia G., Springel V., White S. D. M., Croton D. J., Kauffmann G., 2006,

MNRAS, 366, 499 (deL06)
di Matteo P., Pipino A., Lehnert M. D., Combes F., Semelin B., 2009, A&A,

499, 427
Djorgovski S. G., Davis M., 1987, ApJ, 313, 59
Djorgovski S. G., de Carvalho R. R., 1990, in Fabbiano G., Gallagher

J. S., Renzini A., eds, Proc. 6th Workshop of the Advanced School of
Astronomy, Astrophysics and Space Science Library, Vol. 160, Windows
on Galaxies. Kluwer, Dordrecht, p. 9

Djorgovski S. G., de Carvalho R. R., Han M. S., 1988, in Proc. ASP 100th
Anniversary Symp., The Extragalactic Distance Scale. Astron. Soc. Pac.,
San Francisco, p. 329

D’Onofrio M. et al., 2008, ApJ, 685, 875
Dressler A., Lynden Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich

R., Wegner G., 1987, ApJ, 313, 42
Faber S. M., Dressler A., Davies R. L., Burstein D., Lynden Bell D., 1987, in

Nearly Normal Galaxies: From the Planck Time to the Present. Springer-
Verlag, New York, p. 175

Forbes D. A., Ponman T. J., 1999, MNRAS, 309, 623
Gallazzi A., Charlot S., Brinchmann J., White S. D. M., 2006, MNRAS,

370, 1106
Gott J. R., III, Rees M. J., 1975, A&A, 45, 365
Graham A., Colless M., 1997, MNRAS, 287, 221
Graham A., Guzmán R., 2008, Astrophys. Space Sci. Library, 319,

723
Guzmán R., Lucey J. R., Bower R. G., 1993, MNRAS, 265, 731 (GLB93)
Hambly N. C. et al., 2008, MNRAS, 384, 637
Hewett P. C., Warren S. J., Leggett S. K., Hodgkin S. T., 2006, MNRAS,

367, 454
Hjorth J., Madsen J., 1995, ApJ, 445, 55
Hodgkin S. T., Irwin M. J., Hewett P. C., Warren S. J., 2009, MNRAS, 394,

675
Hyde J. B., Bernardi M., 2009, MNRAS, 396, 1171
Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104
Jeong H. et al., 2009, MNRAS, 398, 2028

Jørgensen I., 1997, MNRAS, 288, 161
Jørgensen I., Franx M., Kjærgaard P., 1995, MNRAS, 276, 1341
Jørgensen I., Franx M., Kjærgaard P., 1996, MNRAS, 280, 167 (JFK96)
Jørgensen I., Franx M., Hjorth J., van Dokkum P. G., 1999, MNRAS, 308,

833
Jun H. D., Im M., 2008, ApJ, 678, 97
Kauffmann G., 1996, MNRAS, 281, 487
Kelson D. D., Illingworth G. D., van Dokkum P. G., Franx M., 2000, ApJ,

531, 137
Kodama T., Arimoto N., Barger A. J., Aragón-Salamanca A., 1998, A&A,

334, 99
La Barbera F., de Carvalho R. R., 2009, ApJ, 699, L76
La Barbera F., Busarello G., Capaccioli M., 2000, A&A, 362, 851 (LBC00)
La Barbera F., Busarello G., Merluzzi P., Massarotti M., Capaccioli M.,

2003, ApJ, 595, 127 (LBM03)
La Barbera F., Merluzzi P., Busarello G., Massarotti M., Mercurio A., 2004,

A&A, 425, 797
La Barbera F., de Carvalho R. R., Kohl-Moreira J. L., Gal R. R., Soares-

Santos M., Capaccioli M., Santos R., Sant’anna N., 2008a, PASP, 120,
681

La Barbera F., Busarello G., Merluzzi P., de la Rosa I. G., Coppola G.,
Haines C. P., 2008b, ApJ, 689, 913 (LBM08)

Larson R. B., 1974, MNRAS, 166, 585
Lawrence A. et al., 2007, MNRAS, 379, 1599
Maraston C., 2005, MNRAS, 362, 799
Marigo P., Girardi L., 2007, A&A, 469, 239
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APPENDIX A : THE MLSO FIT

We consider two random variables, X and Y , related by the linear
model:

Y = p1 + p2X, (A1)

where p1 and p2 are the offset and slope, respectively. We indicate
as x and y the outputs of X and Y . Assuming that the y values are
normally distributed along the orthogonal direction to the line, the
probability of observing a given x and y pair is
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P (r) dr = (
2πσ 2

o

)−1/2
exp

[−r2/
(
2σ 2

o

)]
dr, (A2)

where r is the orthogonal residual, r = (y −p1 −p2x)(1 +p2
2)−1/2,

and σ o is the orthogonal scatter around the relation. In case where
a selection cut is applied,

y < c1 + c2x, (A3)

with c1 and c2 assigned constants, equation (A2) modifies as fol-
lows:

P (r) dr = K(p1, p2, c1, c2; x) exp
[−r2/

(
2σ 2

o

)]
×f (y − c1 − c2x) dr, (A4)

where the function f is equal to one when its argument is smaller
than zero, and vanishes otherwise. The function K(p1, p2, c1, c2; x)
is obtained by the normalization condition

∫
P(r) dr = 1. If no selec-

tion cut is applied (f = 1 identically), one obtains K = (2πσ 2
o )−1/2,

and we recover equation (A2). In general, the K is given by

K = (
2πσ 2

o

)−1/2
2 [1 + erf(t)]−1 , (A5)

with t = [(c1 − p1) + (c2 − p2)x] /(
√

2σo

√
1 + p2

2), and erf de-
notes the error function. For a given sample of data points, the
likelihood, L, can be written as

L =
∑ r2

2σ 2
o

−
∑

(ln K), (A6)

where both sums are performed over the entire data set. In the
case of the KR, one has y = 〈μ〉e and x = log re (Section 5). The
magnitude cut can be written as 〈μ〉e < Mlim + 38.56578 + 5 log re,
where Mlim is the magnitude limit of the sample. This expression
is identical to equation (A4) provided that c1 = Mlim + 38.56578
and c2 = 5. The MLSO coefficients of the KR are then obtained by
minimizing the L with respect to p1, p2 and σ o.

A P P E N D I X B: MATC H I N G TH E M AG N I T U D E

AND SURFAC E BRI GHTNESS DI STRI BU T IO NS

OF ETG SAMPLES

We consider the case where a set of n galaxy samples, with running
indices i = 1 to n, are given. In the case of Section 7.3, we have
n = 2, and the two samples are obtained by splitting the magnitude-
complete sample of ETGs according to a given galaxy parameter
p. First, we select the sample with lowest sample size. For such
sample, we define the minimum and maximum values of absolute
magnitude, Mmin and Mmax, and the minimum and maximum values
of 〈μ〉e, 〈μ〉e,min and 〈μ〉e,max, respectively. We then construct a grid
in the magnitude–〈μ〉e plane, over the rectangular region from Mmin

to Mmax, and 〈μ〉e,min to 〈μ〉e,max. For a given cell k over the grid, we
count the number of galaxies of each sample in that cell, ni,k. We
take the minimum value of ni,k, nk, among all the given samples. For
each sample, we then randomly extract nk galaxies whose magnitude
and 〈μ〉e values fall inside the given cell. This step is performed for
all the cells in the grid. The procedure provides a subsample of
galaxies from each input sample, with all subsamples having the
same number of galaxies and the same absolute magnitude and
〈μ〉e distributions. The mean values of Mmin and Mmax, among the
subsamples analysed in Section 7.3, amount to about −24.6 and
−20.55, respectively, while the mean values of 〈μ〉e,min and 〈μ〉e,max

amount to about 15.2 and 27.2 mag arcsec−2. The step sizes in M and
〈μ〉e are chosen to be 0.2 mag and 0.2 mag arcsec−2, respectively.
This makes the number of galaxies in each cell of the grid to be
smaller than 40. We verified that either reducing or increasing the
bin size in a given direction by a factor of 2 does not change at all
the results presented in Section 7.3.
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