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LISA sensitivities to gravitational waves from relativistic metric theories of gravity
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The direct observation of gravitational waves will provide a unique tool for probing the dynamical
properties of highly compact astrophysical objects, mapping ultrarelativistic regions of space-time, and
testing Einstein’s general theory of relativity. LISA (Laser Interferometer Space Antenna), a joint National
Aeronautics and Space Administration and European Space Agency mission to be launched in the next
decade, will perform these scientific tasks by detecting and studying low-frequency cosmic gravitational
waves through their influence on the phases of six modulated laser beams exchanged between three
remote spacecraft. By directly measuring the polarization components of the waves LISA will detect, we
will be able to test Einstein’s theory of relativity with good sensitivity. Since a gravitational wave signal
predicted by the most general relativistic metric theory of gravity accounts for six polarization modes (the
usual two Einstein’s tensor polarizations as well as two vector and two scalar wave components), we have
derived the LISA time-delay interferometric responses and estimated their sensitivities to vector- and
scalar-type waves. We find that (i) at frequencies larger than roughly the inverse of the one-way light time
(= 6 X 1072 Hz), LISA is more than ten times sensitive to scalar-longitudinal and vector signals than to
tensor and scalar-transverse waves, and (ii) in the low part of its frequency band is equally sensitive to

tensor and vector waves and somewhat less sensitive to scalar signals.
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I. INTRODUCTION

The direct detection of gravitational waves will repre-
sent one of the greatest triumphs of experimental physics
of this century, and provide us with a new observational
tool for obtaining better and deeper understanding about
their sources.

Several experimental efforts have been underway for
years, both on the ground and in space [1-6], and only
recently kilometer-size ground-based interferometers have
been able to identify the most stringent upper limits to date
for the amplitudes of the radiation expected from several
classes of sources. Although an unambiguous detection has
not been declared with present-generation instruments, next-
generation Earth-based interferometers and pulsar-timing
experiments, as well as the LISA (Laser Interferometric
Space Antenna) mission [7] are expected to achieve this goal.

LISA, jointly proposed to the National Aeronautics and
Space Administration (NASA) and the European Space
Agency (ESA), is expected to be flown sometime in the
next decade. Its goal is to detect and study gravitational
waves (GW) in the millihertz frequency band. It will use
coherent laser beams exchanged between three identical
spacecraft forming a giant (almost) equilateral triangle
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of side 5 X 10° kilometers. By monitoring the relative
frequency changes of the light beams exchanged between
the spacecraft, it will extract the information about the
gravitational waves it will observe at unprecedented sensi-
tivities [7]. The astrophysical sources that LISA is expected
to observe within its operational frequency band (10™* —
1 Hz) will be very large in number, including galactic and
extragalactic coalescing binary systems containing white
dwarfs and neutron stars, extragalactic supermassive black-
hole coalescing binaries, and a stochastic gravitational
wave background from the early universe [8,9].

The first unambiguous detection of a gravitational wave
signal, whether performed on the ground or in space, will
also allow us to test Einstein’s general theory of relativity
(GR) by measuring the polarization components of the
detected signals [10,11]. Among all the proposed relativis-
tic metric theories of gravity [12], GR is the most restric-
tive, allowing for only two of possible six different
polarizations [13]. By asserting that the spin-2 (“‘tensor”)
polarizations are the only polarization components ob-
served, we would make a powerful proof of the validity
of Einstein’s theory of relativity, while a clear observation
of some other polarization modes would disqualify it.
Corroboration of polarization measurements with estimates
of the propagation speed of the observed gravitational wave
signal will provide further insight into the nature of the
observed radiation and result in the determination of the
mass of the graviton. It should be emphasized, however,
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that a propagation-speed measurement alone, consistent
with a value equal to the speed of light, would not auto-
matically rule-out other relativistic metric theories of grav-
ity. This is because waves with helicity s = 0 can also
propagate at light speed [14]. Gravitational waves with
scalar polarization are predicted by the most common gen-
eralizations of GR such as scalar-tensor theories. Besides
the classical example of Brans-Dicke theory [15], scalar-
tensor theories result in the low-energy limit of string
theory (see, e.g., [16]). Modifications of the Einstein-
Hilbert action, which consider generic functions of the
Ricci scalar in the Lagrangian [f(R) theories], also predict
“scalar” gravitational waves [17]. Vector modes, on the
other hand, can appear in the so-called “quadratic gravity”
formulations [17], and in the context of theories in which
the graviton has a finite mass such as the Visser theory [18].

LISA will not be able to distinguish the propagation
speeds of scalar (helicity s = 0) and vector (helicity
s = *1) polarizations from the speed of light (a result
following, as we shall see below, from a combination of
the existing stringent upper limits on the mass of the
graviton [19-21] and the LISA observational bandwidth).
However, it should be able to assess the polarizations of the
observed gravitational wave signals. Since the accuracy by
which LISA will distinguish one polarization from another
will depend on their signal-to-noise ratios [22], in this
paper we estimate the LISA sensitivities to scalar- and
vector-polarized wave.

The paper is organized as follows. In Sec. II we derive
the one-way Doppler response to a gravitational wave
signal characterized by six polarizations ([two tensor
(helicity s = *=2), two ““vector” (helicity s = *1), and
two scalar (helicity s = 0)]. Since the resulting expression
is equal in form to the one previously derived by Estabrook
and Wahlquist [23] for tensor waves (i.e. for waves
predicted by general relativity), we conclude that the re-
sponses of the various time-delay interferometric (TDI)
combinations are also identical in form to those previously
derived within the framework of GR [24]. Although the
derivation of the response function of a Michelson inter-
ferometer to nontensor polarization modes has been con-
sidered in previous publications [10,25], the expression
presented there was correct in the so-called ‘“‘long-wave-
length-limit,” i.e. when the wavelength of the GW is much
larger than the size of the detector. Since LISA will be
sensitive, over most of its observational frequency band, to
GWs of wavelength shorter than its linear size, we have
derived the expressions of the LISA TDI responses to
vector- and scalar-waves that are valid for any wavelength.
In Sec. IIT we then compute the LISA sensitivities to vector
and scalar waves. We find that (i) at frequencies larger than
the inverse of the one-way light time (= 6 X 1072 Hz)
LISA is ten times more sensitive to scalar-longitudinal
and vector signals than to tensor and scalar-transverse
waves, while (ii) it is equally sensitive to tensor and vector
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waves, and somewhat less sensitive to scalar signals in the
low part of its frequency band. Although both these results
might seem surprising at first, we show that they are
consequence of the physical and geometrical properties
of the vector and scalar waves and how they affect the
frequency of the light beams exchanged by the three LISA
spacecraft. Finally in Sec. IV we present a summary of the
paper and our concluding remarks. Throughout the paper
we will be using natural units (c = G = h = 1) except
where mentioned otherwise.

II. DERIVATION OF THE ONE-WAY
DOPPLER RESPONSE

In what follows we present the derivation of the “one-
way”’ Doppler response to a gravitational wave signal
predicted by the most general relativistic metric theory of
gravity [13]. Although the result has already appeared in
the literature [26], our derivation results into an expression
that is compact and identical in form to that first obtained
by Wahlquist [27] in the case of plane gravitational waves
predicted by GR. This of course simplifies significantly the
derivation of the LISA TDI responses as they turn out to be
equal in form to those given in [24]. As in [23,27], our
derivation is general and does not rely on any assumptions
about the size of the wavelength of the radiation relative to
the size of the detector.

Let us consider a space-time with the following metric:

ds? = —di* + (8;; + h;j(vt — z))dx'dx/, lh;l <1,
ey
where the usual sum convention over repeated indices
is assumed, Latin indices go from 1 to 3, and a plane-
gravitational wave has been assumed, without loss of gen-
erality, to propagate along an arbitrary +z direction. In
Eq. (1) we have allowed the wave to travel at a finite speed
(group velocity) v <1 to account for a possible nonzero
mass of the graviton. Working in the context of GR, it
is well known that /;; has 2 degrees of freedom represent-
ing gravitational waves (GWs) with helicity s = =2, and
v = 1. On the other hand, alternative relativistic metric
theories of gravity allow for GWs with up to 6 degrees of
freedom [13]. Therefore, in the most general case, h;; can
be represented in terms of six components (with corre-
sponding six metric amplitudes) in the following form [13]:

6
hijwt = 2) = 3 € hiy(wi = 2), @
r=1

where eg;) are the six polarization tensors associated with
the six waveforms of the gravitational wave signal. If we
introduce a set of Cartesian orthogonal coordinates (x, y, 7)
associated with the wave, in which (x, y) are in the plane
of the wave and z is along the direction of propagation
of the wave and orthogonal to the (x, y) plane, the above
six polarization tensors assume the following matrical

form [13]:
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From the above expressions it is easy to verify that the
tensors e(“), a=1,....,6 are linearly independent and
form an orthogonal basis. In our notation we have labeled
4 and 5 the usual + and X polarizations, respectively (the
tensor polarization waveforms). The vector polarizations
(s = £1) were labeled as 2 and 3, and finally the two scalar
modes (s = 0) have been denoted with the labels 1 (for the
longitudinal scalar polarization) and 6 (for the transversal
scalar mode).

Following [23,28] we may notice that the space-time
described by the metric of Eq. (1) allows for the following
three Killing vectors:

o7

Po=8+ L (4)

K’ =&, A é

P _ sP
i K =8, K

(2
Generally speaking, in the weak field regime of a generic
metric theory of gravity, GWs can travel with v = 1. In
that case the linearized field equations are Klein-Gordon
type, and the resulting group velocity is determined by the
mass of the graviton, m. Remembering that v = dw/ 0k,

and that the dispersion relation is equal to k = Vw? — m?,
we find the following expression for v in terms of m and w:

v(w) = |1 — (ﬂ)z (5)

w

Since the operational frequency band of LISA will be
within the range (107* — 1 Hz), by assuming presently
known upper limits for the mass of the graviton from
Eq. (5) we obtain the resulting values for the group velocity
of these waves. After restoring physical units and taking
m <107 g (the most stringent constraint to date
obtained by requiring the derived dynamical properties of
a galactic disk to be consistent with observations [21]), at
10~* Hz we find a value for the group velocity v whose
fractional difference, A,, from the speed of light is equal
to A, = |v — c|/c = 10713, A less stringent value for the
mass of the graviton equal to m < 7.68 X 107> g (ob-
tained from solar-system dynamics observations [19]),
results into a A, =~ 1078, These considerations imply
that, no matter whether we are conservative or not in our
assumption about a likely upper limit for the graviton mass,
LISA will not be able to resolve the propagation speeds of
the different polarization components of the detected GW's
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by resolving the time separations of their imprints in the
TDI combinations [24]. For this reason, from now on, we
will assume v = 1 in natural units, and rewrite the third
Killing vector K3 as Ké) =60 + &7,

Let us now consider the unit vector 7 along the Doppler
link and oriented from spacecraft 1 to 2 (see Fig. 1). If we
denote with (6, ¢) the usual polar angles, 7 assumes the

following familiar form:
n? = sinf cosp 8% + sinf singp 85 + coshSL.  (6)

Since the most general Killing vector of our metric can be
written as a linear combination of the three Killing vectors
above

KP = a15§ + (1285 + (13(85 + 8?), (7)

with a;, a,, a; constants, by comparing Eq. (6) and Eq. (7)
we note that by taking (a;, a,, az) = Ci, Eq. (7) becomes

KP = C[n? + k- 18] (8)

where C is an arbitrary constant, and k is the unit vector
along the direction of propagation of the wave (see Fig. 1).

If we now consider the 4-momentum of a photon trans-
mitted by spacecraft 1, its analytic expression can be
written in terms of the metric perturbation at spacecraft 1
in the following way [23,28]:

P, = (=8, + n, + 3hyen), €))
where it is easy to see that the condition P,P? =0 is
fulfilled to first order in the metric perturbation 4;;. Since
PpKP = constant along the photon world line [23,28], we
obtain the following relationship between the frequency of
the photon emitted at spacecraft 1, v, and that received at
spacecraft 2, v/

FIG. 1 (color online). A laser beam of nominal frequency v is
transmitted from spacecraft 1 to spacecraft 2 and simultaneously
another beam from spacecraft 2 is transmitted back to 1. The
gravitational wave train propagates along the z direction, and the
two polar angles (6, ¢) describe the direction of propagation of
the laser beams relative to the wave. See the text for a complete
description.
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P,K? = P,K", (10)

vo(=6l, +n, + %hpgnf)(np + k- nd?)
=v/(=6, +nj, + %hzfn’f)(n’p + k- a's?).  (11)
If we now rewrite n’? = n? + dn®, we may notice that, to
first order in 4;;, n”dn, = 0 because n’pn” =n,n’ = 1.
This result, together with Eq. (11) above, allows us to

derive the following expression for the ratio of the two
frequencies v’ and v:

v L=k A+ inlhyent

vo 1—k-a+inPhl né

12)

Finally, expanding the right-hand side of the last equation
to first order in &, we get the resulting expression for the
one-way Doppler response, y:

y=(0+k AV -V, (13)
where y(r) = (v/(r) — vy)/ vy, and W(z) is equal to
n'h;(nn!
21 = (k- A)*T

By explicitly showing the time dependence of the various
terms, y(¢) can be rewritten in the following form [24]:

W(r) = (14)

y() =1 +k-A[We—L)—W(—k-aLl)], (15)

where L is the separation between the two spacecraft. Note
that, in order to obtain the above expression, we have only
assumed the time components of the metric perturbation,
h,, to be equal to zero [13].

The expression for the one-way Doppler response
measured on board spacecraft 1 at time ¢ can be obtained
from Eq. (15) by changing 7 — —1, and further delaying
the waveforms by & - AL. The resulting one-way Doppler
response, y'(z), is equal to

V() =0 —k-A)[¥(—(1+k-AL)— V@] (16)

Since the above expressions of the one-way Doppler
responses are identical in form to those valid for tensor
waves [27], it follows that the various TDI combinations of
the LISA six interspacecraft one-way Doppler measure-
ments will also be identical in form to those derived in [24].
For these reasons they will not be given here, and we refer
the reader to [24,29,30] for more details.

III. LISA SENSITIVITIES

In this section we will compute the LISA TDI sensitiv-
ities to vector and scalar waves. Although the LISA
sensitivities to tensor waves have already been presented
in an earlier publication [31], for the sake of comparison
we will include them in the sensitivity plots presented
in this section. We will specialize our calculations to
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the equilateral-triangle configuration: armlength 1 =
armlength 2 = armlength 3 = L (L = 16.7 light seconds)
since the LISA arm lengths will differ by at most a few
percent, and any corrections to our results will be to this
level of accuracy [24,30,31].

The LISA sensitivity to tensor GWs has been tradition-
ally taken to be equal to (on average over the sky and
polarization states) the strength of a sinusoidal GW re-
quired to achieve a signal-to-noise ratio of 5 in a one-year
integration time, as a function of Fourier frequency.
Although in the case of vector waves the average over
the polarization states can be performed by implementing
the same procedure described in [24,31] for tensor waves,
in general this cannot be done for scalar waves. This is
because the two scalar fields are mutually orthogonal (and
independent), as one is purely longitudinal and the other
purely transverse to the direction of propagation of the
wave.

In order to compute the LISA sensitivities, we will use
the following expressions for the power spectra of the
noises affecting the X, «, {, E, P, and U combinations
[31] (see Fig. 2):

Sx(f) = [8sin*(4arfL) + 32sin*>(27fL)]S" (f)
+ 16sin227fL)SL(f) a7

So(f) = [8sin>(3mfL) + 16sin2(7fL)]ISE™(f) + 6S(f)
(18)

S (f) = 24sin*(wfL)SY"(f) + 6837 (f)  (19)

Sg(f) = [32sin®(wfL) + 8sin?(2wfL)]1SS" (f)
+ [8sin?(wfL) + 8sin>(2wfL)ISy’(f)  (20)

Noise Power Spectra (Hz'1)
8\
3
‘\
NS
«

107 10 10
f(Hz)

FIG. 2 (color online). Noise spectra in the X, a, {, E, P, and U
time-delay interferometric combinations accounting for the
nominal proof mass and optical path noises. The varying depths
of the minima in the high-frequency ranges of X, E, and P are an
artifact of numerically calculating these functions at discrete
frequencies.
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Sp(f) = [8sin?(2arfL) + 32sin’*(wfL)]S5" (f)

+ [8sin?(27fL) + 8sin?(wfL)ISY ()  (21)
Sy(f) = [16sin?(7rfL) + 8sin>(27fL)

+ 16sin>(37fL)]SY" (f) + [4sin®(7fL)

+ 8sin>(27rfL) + 4sin*(3fL)1Sy’(f),  (22)

where S}™(f) = 2.5 X 107[f/1 Hz] 2Hz ! is the spec-
trum of the relative frequency fluctuations due to each

T
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Vector., T
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Vector Scalarh

Tensor
Scalar T

N O AN
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5]

1072 10 10
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FIG. 3 (color online).
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proof mass, and Sy'(f) = 1.8 X 10737[f/1 Hz]* Hz!
is the spectrum of optical path (mainly shot and beam
pointing) noise. Both these noises can be regarded as the
main limiting noise sources for LISA [7,31].
Gravitational wave sensitivity is the wave amplitude
required to achieve a given signal-to-noise ratio.
We calculate it in the conventional way, requiring a
signal-to-noise ratio of 5 in a one year integration time:

54/S;(f)B/(root-mean-squared gravitational wave response
for data combination k), where kis X, «, , E, P, U, and S},

Scalar L

o

Vector
Tensor

Scalar T

opys (VH

G

Scalar L
Vector =

Upus(H
S

107 107" 10°
f(Hz)

Root-mean-square responses of the (a) X, (b) «, (¢) ¢, (d) E, (e) P, and (f) U TDI combinations to tensor

(s = x2), vector (s = £1), and scalar (s = 0) gravitational waves. The former two have been treated as elliptically polarized waves,
while the two waveforms characterizing the scalar signals have not as they are mutually orthogonal (and therefore independent). The
sensitivities have been calculated by assuming an ensemble of sinusoidal signals uniformly distributed on the celestial sphere and (in
the case of tensor and vector radiation) randomly polarized. In the high part of the frequency band the rms values of the vector and
scalar-longitudinal waves are noticeably larger than the tensor and scalar-transverse signals, and grow with the Fourier frequency.
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is the total noise power spectrum for TDI combination k. ~ For scalar signals instead, the two wave functions,
The bandwidth, B, was taken to be equal to one cycle/year  (h(), 1)) have been treated as independent and we calcu-
(i.e. 3.17 X 107% Hz). lated the TDI sensitivities to each of these two polarizations.

We have assumed the vector waves to be elliptically  For both vector and scalar signals we averaged over source
polarized and monochromatic, with their wave functions,  direction by assuming uniform distribution of the sources
(h®, h9), written in terms of a nominal wave amplitude,  over the celestial sphere; in the case of vector signals we

H, and the two Poincaré parameters, (P, I'), in the follow-  also averaged over elliptical polarization states uniformly
ing way: distributed on the Poincaré sphere for each source direction.
O( — 1o . The averaging was done via Monte Carlo integration with
h2(1) = Hsin(l) sin(wr + P), (23) 4000 source position/polarization state pairs per Fourier
frequency bin and 7000 Fourier bins across the LISA

hB)(f) = H cos(T) sin(w?). (24 (107* — 1) Hz band [24,31].
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FIG. 4 (color online). Sensitivities of the (a) X, (b) a, (¢) {, (d) E, (e) P, and (f) U TDI combinations to gravitational waves with
tensor (s = *£2), vector (s = *1), and scalar (s = 0) components. Consistently with Fig. 3, we may notice how more sensitive the
various TDI combinations are to vector and scalar-longitudinal signals than to tensor and scalar-transverse waves in the high-frequency
part of the LISA frequency band. See the text for more details.
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Figure 3 shows the root-mean-squared (rms) responses
of the TDI combinations (a) X (unequal-arm Michelson),
(b) a (Sagnac), (c) ¢ (symmetrized Sagnac), (d) E (moni-
tor), (e) P (beacon), and (f) U (relay) to tensor (already
derived in [24] and shown here for comparison), vector
and scalar gravitational waves. In the high part of the
LISA frequency band we may notice that the rms re-
sponses to vector and scalar-longitudinal waves are sig-
nificantly larger than those to tensor and scalar-transverse
signals. In particular, the scalar-longitudinal rms response
grows with the frequency at a much faster rate than the
others.

In order to physically understand this effect, let us
compare a one-way Doppler response (that measured on
board spacecraft 1, for instance) to a “pulse” tensor wave
against that due to a scalar-longitudinal pulse wave. A
tensor signal propagating orthogonally to the light beam
(direction for which the one-way Doppler response can
reach its maximum magnitude in this case) will only
interact with the light for the brief instance its wave front
crosses the light beam. On the other hand, if a scalar-
longitudinal wave propagates along the direction between
the two spacecraft (over which the Doppler response will
achieve its maximum in this case), the frequency of the
light will be affected by the gravitational wave for the
entire time L it takes the wave to propagate from one
spacecraft to the other, resulting into an amplification of
the frequency shift when the wavelength of the wave is
shorter than the interspacecraft distance, L. The above
considerations become apparent by considering in both
cases the one-way Doppler response y’ in the Fourier
domain. For a tensor signal, the modulus squared of the
Fourier transform of Eq. (16) with k-4 — 0 becomes
equal to

5 (F)p.amol® = sin?(wfLAHIZ, (25)

with 77 = A% cos(2¢) + A sin(2¢). In the case of a
scalar-longitudinal signal instead, it is easy to show that,
in the limit of k-4 — —1, the modulus squared of the
Fourier transform of Eq. (16) becomes equal to

5 () ppy 1> = (mfLHRD ()] (26)

From the above two expressions we may conclude that, at
frequencies larger than the inverse of the one-way-light-
time and for tensor and scalar-longitudinal waves of com-
parable amplitudes, the maximum one-way Doppler re-
sponse to a scalar-longitudinal signal will be larger than
the corresponding maximum response to a tensor wave by
roughly a factor of 77 f L. This example implies that the rms
of the TDI responses to scalar-longitudinal signals will be
larger than those to tensor waves in the high-frequency
region of the LISA band. Similar considerations can be
made for understanding the differences between the rms
responses to tensor and vector waves.
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In the low-frequency limit (for f <5 X 1073 Hz) the
tensor and vector rms responses coincide, while those for
the two scalars also coincide with each other but are
smaller by a factor of about 2 than those for tensor and
vector waves. This is because the two scalar waves, being
mutually orthogonal, have been treated as independent
rather than elliptically polarized like the vector and tensor
waves.

In Fig. 4 we then plot the corresponding sensitivities of
the TDI combinations to the tensor, vector, and the two
scalar polarization components. The characteristic behav-
ior of the rms responses to scalar-longitudinal and vector
signals shown in Fig. 3 folds into the plots presented here.
At high frequencies the sensitivity to scalar-longitudinal
waves is significantly better than that to tensor, vector,
and scalar-transverse waves. At 1 Hz, for instance, the
sensitivity of scalar-longitudinal signals is about a factor
of fL =~ 17 better than that to tensor waves, while it is
only a factor of 3 better than the sensitivity to vector
signals.

Another interesting feature noticeable in Fig. 4 is the
lack of sensitivity of the Sagnac combinations (b) « and (c)
{ to scalar-transverse waves at frequencies equal to integer
multiples of the inverse of the one-way-light-time. We
have verified this result analytically and found that indeed,
at these frequencies, the Sagnac responses are identically
equal to zero independently of the direction of propagation
of the signal.

IV. SUMMARY AND CONCLUSIONS

The main results of our work have been that (i) LISA is
more sensitive to scalar-longitudinal and vector signals
than to tensor waves in the high part of its frequency
band, and (ii) at low frequencies its sensitivities to tensor
and vector signals are equal and somewhat better than
those to scalar waves. We have also found that the LISA
TDI Doppler responses to scalar-longitudinal waves prop-
agating along any of the three LISA arms will experience
an amplification proportional to the arm length. These
results, together with the LISA capability for constructing
three independent TDI combinations in the high part of its
observational frequency band, should provide LISA with
the capability for assessing the polarization of the waves it
will detect. This will be the topic of our forthcoming
investigation.
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