
MOST: a Multi-Objective Search-Based Testing from EFSM

Thaise Yano, Eliane Martins

Institute of Computing
State University of Campinas, UNICAMP

Campinas, SP, Brazil
tyano,eliane@ic.unicamp.br

Fabiano L. de Sousa

Space Mechanics and Control Division
National Institute for Space Research, INPE

São José dos Campos, SP, Brazil
fabiano@dem.inpe.br

Abstract—This paper introduces a multi-objective evolution-
ary approach to test case generation from extended finite state
machines (EFSM), named MOST. Testing from an (E)FSM
generally involves executing various transition paths, until a
given coverage criterion (e.g. cover all transitions) is met. As
traditional test generation methods from FSM only consider the
control aspects, they can produce many infeasible paths when
applied to EFSMs, due to conflicts in guard conditions along
a path. In order to avoid the infeasible path generation, we
propose an approach that obtains feasible paths dynamically,
instead of performing static reachability analysis as usual for
FSM-based methods. Previous works have treated EFSM test
case generation as a mono-objective optimization problem.
Our approach takes two objectives into account that are the
coverage criterion and the solution length. In this way, it is not
necessary to establish in advance the test case size as earlier
approaches. MOST constructs a Pareto set approximation, i.e.,
a group of optimal solutions, which allows the test team to
select the solutions that represent a good trade-off between
both objectives. The paper shows empirical studies to illustrate
the benefits of the approach and comparing the results with
the ones obtained in a related work.

Keywords-model-based testing; feasible path; search-based
testing; EFSM

I. INTRODUCTION

Test generation is a time-consuming activity, and is still

predominantly manual. Model-based testing (MBT) is aimed

at the automatic test case generation from system behavior

models. State models are commonly used to represent sys-

tem behavior and have been used for test case generation for

a long time [1]. In particular, extended finite state machines

(EFSM) allows the representation of control as well as data

aspects of a system behavior, and can be used to represent a

large variety of systems. Test case generation from EFSM,

however, is still challenging. Several researchers have con-

sidered the control and data flow separately [2], [3], [4]. For

the data part, the test selection is based on data-flow criteria

developed for structural testing, since the notation used for

the description of predicates and actions of an EFSM is

similar to high-level programming languages. To test the

control flow, the traditional methods for test case generation

from finite state machine (FSM) have been applied. The

basic idea of these methods is to systematically traverse

the model based on a coverage criterion (e.g. all states or

all transitions) in this way generating transition paths. In

other words, to generate these paths, it is common to use

reachability analysis that performs breadth-first or depth-first

search of the model. One limitation is that the reachability

graph can be infinite, and it is not easy to determine when

it is safe to stop the search. Besides, generated paths can be

infeasible for an EFSM because of conflicts in conditions in

the path.

Instead of exhaustive enumeration of the state space,

search-based software testing (SBST) uses meta-heuristics

to find test data. The input domain is usually too large

for exhaustive testing to be practical. Moreover determining

the test data is an undecidable problem and, then, SBST

is one way to deal with this problem. Early SBST ap-

proaches focused mainly on test data generation for code-

based testing [5]. Recently, there are initiatives for model-

based testing, in special, from EFSM [6], [7], [8]. A crucial

difference in this context is the number of design variables,

i.e., elements to be optimized. In code-based testing, the

design variables are defined according to the arguments of

the program under test, while in MBT it is necessary to

generate a test sequence. Thus, the length of a test sequence

is also of concern to test case generation.

In this paper we propose the MOST approach, a Multi-

Objective Search-based Testing from EFSM. To cope with

the problem of infeasible paths generation, we use model ex-

ecution to obtain the transition paths, instead of reachability

analysis. Executable modeling for requirements specification

is used to produce a prototype of a system in its initial

development phase. One of the benefits of using such models

is that system validation can be accomplished earlier in

the development cycle. MOST uses an executable version

of an EFSM model to evolve the solutions obtained with

the use of a meta-heuristic algorithm. The goal is to cover

a given test purpose, which, in our case, represents one

target transition. By instrumenting the executable model,

it is possible to observe the executed transition path for a

given input sequence. The input sequence consists of the

input interactions and the data to trigger a transition path.

In case the observed transition path does not satisfy the test

purpose, the input interactions and the data are modified and

the process is iterated.

2011 Fourth International Conference on Software Testing, Verification and Validation Workshops

978-0-7695-4345-1/11 $26.00 © 2011 IEEE

DOI 10.1109/ICSTW.2011.37

164

MOST uses a multi-objective optimization approach,

which in particular searches a balance between the minimum

length of the input sequence and the test purpose coverage.

There are many situations for which the cost of executing a

test case is high, in special, when using hardware-in-the-loop

or when accessing remote infrastructure (e.g., database).

Therefore, our goal is not only to satisfy a given test

criterion, but also to allow users to select shorter test cases,

when they intend to reduce execution cost.

To guide the search algorithm, we propose the use of

model slicing in a previous work [8], while in this paper

we rely solely on dependence analysis. As we are only

interested in identifying the parts of the EFSM that affect

the test purpose, the dependence analysis is enough for this

intent and we do not need to perform all steps to obtain the

model slice. The objective functions were modified to take

into account this change and also to reward better a solution

that achieves the test purpose. The dependence analysis is

used to deal with the loss of information problem [9], due

to the lack of controllability of the internal variables (or

context variables) of the EFSM by the search algorithm. An

experimental analysis is presented to evaluate the efficiency

of MOST and the results were compared to test cases

obtained by Kalaji et al. [7]. The main contributions of this

paper are as follows:

• The paper introduces the MOST approach, which in-

tegrates the control as well as the data aspects of an

EFSM for test case generation. Control and data aspects

are treated in one step, that is, MOST obtains not only

the transition path that constitutes a test case, but also

the data that triggers this path. In general, the data is

random and obtained after the path generation.

• The use of dependence analysis to guide the search for

a solution.

• An executable model is used for the test case gener-

ation. A first advantage of this approach is that users

can simply execute the model in order to validate it

before test case generation. Secondly, since the model

is an abstraction of the real implementation, it is more

attractive for dynamic test case generation than the

system implementation. A third point is the possibility

to generate test cases even when no source code is

available, such as third-party components or services.

Finally, the use of an executable model is also aimed

at coping with the infeasible path generation problem:

only paths triggered during model execution are con-

sidered as candidate solutions.

• The multi-objective approach allows the automatic ad-

justment of solution length to cover the test purpose. In

some approaches [9], [6], [7], this length must be given

in advance by the user, and sometimes the algorithm is

not able to find a solution for the given length.

• The paper also presents the results from an empirical

study using, as subjects, the models used by Kalaji

et al. [7]. The results show that MOST is capable

of producing test cases for the same models as in

the existing approach. The solutions obtained in both

approaches are also compared, and a discussion of this

comparison is presented.

The paper is organized as follows. Section II presents

the EFSM model, the dependence analysis definitions and

also some related works. Section III describes the test

case generation approach, MOST. Section IV describes the

experiments. Section V remarks some conclusions and future

works.

II. BACKGROUND

A. The model

The system behavior is represented by an EFSM, defined

as a tuple (S, s0, I, O, T, V, P) in which [10]: S is a finite

set of states; s0 ∈ S is the initial state; I is a set of input

events; O is a set of output events; T is a finite set of

transitions; V is a set of variables; and P is a set of input

parameters. Each transition t ∈ T is given by a source state

source(t) ∈ S, a target state target(t) ∈ S and a label

of the form i(t)[g(t)]/a(t) where: i(t) ∈ I , g(t) is a logical

expression called guard and a(t) is the action executed when

the transition is activated. Input events can contain one or

more parameters belonging to P . The parts g and a of

the label are optional. A transition is triggered when the

corresponding input event occurs and the guard associated

with the transition is satisfied. The guard g can contain

logical and comparative operators. When the transition is

triggered, the corresponding action a is executed, which may

change values of variables and parameters in assignment

statements, or also produce output events. It is assumed that

the machine remains in its current state upon reception of

an unexpected input (i.e., inputs not specified in a given

state). In the presence of such input, the machine generates

a null output as response. In order to illustrate the concepts

presented, we use as example the EFSM M1 of a simple

ATM (Automated Teller Machine) [7] (Figure 1).

B. The dependence information

Many approaches for program dependence analysis are

based on control-flow graphs that satisfy the unique endpoint

requirement, which is not applicable to EFSM in general, as

they can have multiple exit nodes or no exit nodes at all. We

select the dependence analysis for state models defined by

Androutsopoulos et al. [10], [11], since they encompass the

main results of previous works and also cope with the non-

termination possibility in EFSM. The main concepts used in

this research are presented in the sequel.

Androutsopoulos et al. define the dependence analysis

according to the type of path. A path is a sequence of nodes

such that for every consecutive pair of nodes (nj , nj+1) in

the path there is an edge from nj to nj+1. A transition

165

Figure 1. EFSM for an ATM system [7]

tj ∈ T is in a path if (nj , nj+1) is in the path and

nj = source(tj) and nj+1 = target(tj). A path may be

infinite, since it is possible to have infinite loops.
A generic notion of control dependence between transi-

tions is given in terms of a function PATHs.

Definition 1. A transition tj is control dependent on a
transition ti (ti

CD−−→ tj) iff ti has at least one sibling
tk such that: i. for all paths π ∈ PATHs(target(ti)),
the source(tj) belongs to π; ii. there exists a path π ∈
PATHs(source(tk)) such that the source(tj) does not
belong to π. Two transitions ti and tk are siblings if
source(ti) = source(tk).

The control dependence called NTSCD (Non-Termination

Sensitive Control Dependence) is defined considering

PATHs as the maximal path function.

Definition 2. A maximal path π is any path that terminates
in a final transition, or is infinite. A final transition is one
whose target is an exit state that has no outgoing transitions.

The data dependence (DD) relates transitions according

to definitions and uses of variables:

Definition 3. A transition tj is data dependent on a
transition ti with respect to a variable v (ti

DD−−→ tj) if:
i. v ∈ D(ti), where D(ti) is a set of variables defined
by transition ti, i.e. variables defined by actions and by
the event of ti; ii. v ∈ U(tj), where U(tj) is a set of
variables used in a condition and actions of transition tj;
iii. there exists a path in an EFSM from the source(ti)
to the target(tj) whereby v is not modified by any of the
intermediate transitions.

In our approach, we define two sets of transitions using

the information obtained from the dependence analysis:

Taffecting and Tcritical. For each transition, we can identify

its affecting transitions, Taffecting , based on the dependence

graph (DG) that shows the control and/or data interdepen-

dences among the transitions.

Definition 4. For a given transition t, Taffecting(t) contains
t and the transitions obtained by a backward traversal of DG
starting at t.

Taffecting(t) contains all transitions upon which t is

directly or indirectly control and/or data dependent. For

the transition t13 in the ATM model, Taffecting(t13) =
{t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t13, t14, t17, t18, t23, t24, t25,
t26, t27, t28} considering the dependence types DD and

NTSCD in the DG. The test purpose t is always included

in Taffecting . In our approach, a test path (path starting at

the initial state) to reach t needs to contain transitions in

Taffecting(t). However, not all transitions in Taffecting(t)
must be part of the test path. For example, a test path that

reaches t13 can be: t1t4t6t7t9t7t13.

Also important to guide our test case generation is to

determine the notion for EFSM that corresponds to crit-

ical branching nodes in structural testing [12]. This is a

branching node with an exit that, if taken, the test path

misses the target. In order to extend this concept for an

EFSM transition, we use the definitions 1 and 3, according

to which a transition t may be dependent on a transition

ta, which can have a sibling tc, and there exists a path

π ∈ PATHs(source(tc)) such that the source(t) does not

belong to π. We define a critical transition as:

Definition 5. A transition tc is critical with respect to
a target transition t if tc /∈ Taffecting(t) and ∃ta ∈
Taffecting(t)|source(tc) = source(ta).

Using Definition 5 it is possible to define Tcritical(t),
the set of all critical transitions for t. Considering t13
of the ATM example as test purpose, Tcritical(t13) =
{t11, t12, t19, t20}

166

C. Related works

In the context of model-based testing, Kalaji et al. [6]

proposed the generation of feasible paths from an EFSM,

using a genetic algorithm (GA). They proposed a fitness

metric based on the data dependence analysis of a path.

The testability of the model is improved in order to search

feasible paths and a penalty value is assigned to a path

according to the assignment type, guard type and its operator

of the transitions. In [7], the metric was extended to deal

with counter variables (i.e., variables that counts how many

times a transition is repeated). The test case generation

of Kalaji et al. requires two steps: one to generate the

transition paths, and another one to generate test data to

sensitize the paths. The MOST approach requires only one

step for the generation of a test case. The problem of

infeasible paths generation is considered in another way in

our work: we use an executable model to obtain only feasible

paths. Our evolutionary algorithm generates an input events

sequence and the values of their parameters and evaluates

the transition path triggered during model execution. A last

difference is that in MOST the path length is not defined a

priori: it is determined during test case generation.

There are works that investigate a search-based testing to

generate a sequence of function calls [9], [13]. The objective

function also uses the concept of approach level and branch

distance. In [9], the sequence with their parameters is

obtained during the search for a solution, as in our work.

However, they use the chaining approach to represent the

sequence and predefine the sequence length. In relation

to [13] instead of a target path, we focus on the transition

coverage. Then we do not have available a given path to

guide the search and, for this reason, dependence analysis

is used in our approach.

There are few evolutionary multi-objective methods ap-

plied to software testing. But all of them focus on different

purposes: branch coverage and dynamic memory consump-

tion of programs [14], coverage, cost and fault history for

regression testing [15]. We are concerned with test purpose

coverage and solution length.

The MOST approach is based on a previous work [8].

The main difference is the model analyzer component that

uses dependence analysis, instead of slicing of the model.

The objective functions are adapted to take into account

this modification and also are improved to reward better a

solution that covers the test purpose.

III. TEST GENERATION APPROACH

The proposed approach, MOST, consists of the following

steps:

1) develop the model M :

a) elaborate an EFSM M ;

b) obtain an executable version of M ;

c) validate M ;

2) analyze the dependences of M to obtain the transitions

sets Taffecting and Tcritical;

3) generate the test cases.

The system under test is modeled according to the EFSM

presented in Section II-A. Once created, the executable

version of this model should be obtained (Section III-A).

For the second step, the dependence information is obtained,

as described in Section II-B. The evolutionary approach

used for test case generation (third step) is explained in

Sections III-B, III-C and III-D.

A. Construction of the executable model

The EFSM M is manually obtained from the system

requirements. The model should be expressed in a way that

allows its executable version to be created. Its executable

version implements the behavior in a programming lan-

guage. Since we use a model that is UML compliant, any

tool supporting executable UML can be used to generate

the model code. We use the SMC tool1 (State Machine

Compiler) that takes as input an EFSM and returns the

source code of the model in different languages. We use

the Java version of the source code generated by the tool,

in order to keep the language compatibility used in the test

case generator prototype. In the following, we show how the

EFSM is associated with the Java code.

Definition 6. A state s ∈ S is associated with a Java class.
A transition t ∈ T with source(t) = s, where s ∈ S, is
associated with a method of the class corresponding to s.

When the method corresponding to a transition t is

executed, the input event i(t) is received and the guard g(t)
is verified, considering the current state s and source(t) = s.

The action a(t) is executed, whether g(t) is true; otherwise,

a null output is produced. In case an unexpected event is

received, the machine remains in the same state and a null

output is produced (completeness assumption).

As MOST is a model based testing technique, the test

cases are derived from the model. Therefore, the validation

of the model is important since the testing activity depends

on the model. Using an executable model makes it easy

for a non-expert user to validate the model: the user just

runs the model using the input sequences to determine

whether the behavior is as expected. The executable model is

instrumented to monitor the triggered transitions, producing

the path traversed by an input sequence during execution.

Once validated, the model can be used for test generation.

B. Multi-objective evolutionary approach

Multi-objective optimization is the process of simulta-

neously optimizing two or more objective functions. This

section presents why and how we use a multi-objective

optimization for our model-based testing approach.

1Available in http://smc.sourceforge.net.

167

Multi-objective evolutionary algorithms intend to solve

problems when the solutions need to meet several conflicting

objectives simultaneously and no single optimal solution

exists. In other words, there is no single solution that

simultaneously optimizes each objective; the solution must

adopt a trade-off among the objectives. This trade-off is

known as Pareto optimal set and the corresponding objective

functions values form the Pareto front. Each solution is

non-dominated which means that it cannot be improved

in any objective without causing degradation in at least

one other objective. Without loss of generality, a multi-

objective problem can be the minimization of F (X) =
[F1(X), F2(X), . . . , Fnof (X)], where X represents the de-

sign variables and nof the number of objectives. A solution

X1 is said to dominate a solution X2 if and only if

Fi(X1) ≤ Fi(X2) ∀i ∈ {1, . . . , nof} ∧
Fj(X1) < Fj(X2) ∃j ∈ {1, . . . , nof}.

MOST forms the Pareto optimal set based on two criteria:

coverage of a test purpose and solution length. As far as we

know, MOST is the first model-based testing evolutionary

approach that uses Pareto optimality for test case generation.

The multi-objective approach was chosen due to the search

space in MBT. Differently from code-based test generation

approaches, in which a solution consists of the arguments

values of the program under test and the number of the

arguments is known, we generate a sequence of input events

with their parameters. The length of the input sequence is, a

priori, not limited, as a reactive system can never terminate.

Thus in our approach, the sequence length is automatically

determined during test case generation. A simple approach

consists in letting the user define the length of the input

sequence before starting the search [16], [17], [6]. However,

in case the user chooses a length value that is too small

for the algorithm to find a solution, it is necessary to give

another value and start test case generation all over again.

Furthermore, the aim is also to give the user the opportunity

to choose a minimal length test case that covers the test

purpose, when the test case execution takes too long.

As evolutionary algorithm, we use the M-GEOvsl (Multi-

Objective Generalized Extreme Optimization with variable

string length), presented in previous work [8]. As stated

before, MOST uses two criteria for test case generation that

are represented by two objective functions: the test purpose

coverage (F1) and the minimum length of the input sequence

(F2). The latter intends to minimize the input sequence

length. In other words, we search for a minimum length of

the input sequence but long enough to cover the test purpose.

F2 is given by (2) below, in which |seq| represents the input

sequence length. A value into the range [0,1] is added to the

sequence size in the sense of penalizing unexpected inputs,

since these inputs do not append transitions to the path.

Minimize : F1 = AL+ND (1)

F2 = |seq|+ 1− 1.001−unexpectedInputs
(2)

where

AL = 2 ∗ |Taffecting| −RW

ND = 1− 1.001−d

RW =

{ |T ′affecting| , if not cover t;
|T ′affecting|+ |Taffecting| , if cover t.

The objective function F1 is calculated in terms of the

approach level AL and normalized distance ND [5], as

in structural testing, but with some slight modifications to

consider EFSM features for the calculation of these terms.

AL measures how close an input sequence is to reach a

path that traverses the test purpose t. AL is calculated

based on the dependence information using Taffecting . The

transitions ta ∈ Taffecting(t) are used to guide the search

toward t. The value of AL is minimized with relation to

the number of transitions of Taffecting that were triggered

(|T ′affecting|) during model execution. If the sequence pro-

duces a path that traverses t (i.e., t is covered), the fitness

value is rewarded with |Taffecting|. The normalized distance

ND [18] is calculated at the point where the control flow

takes a critical transition tc ∈ Tcritical(t), that diverges

away from a transition ta ∈ Taffecting(t). Thus the siblings

transitions of ta need to be analyzed. It is worth noting that

more than two transitions can have the same source state in

an EFSM, in contrast to code-based testing that only the true

and false branch of a node are verified. Then to penalize

the solution that takes a critical transition, two situations

need to be considered for the calculation of the term d in

ND: i. the input event of tc and ta are the same but the

guards are different and ii. the input event of tc and ta
are different. In the first case, the distance d is computed

using the functions defined by Tracey et al. [19] (Table I).

For example, if a guard transition (x == y) needs to be

evaluated as true to reach the test purpose, the distance

function is defined as abs(x − y) + K for transitions with

the same input event. The value K is a non-zero positive

constant which is always added if the term is not true. In

the second case, taking tc receives a penalty γ in order

to distinguish solutions with different input events. It is

important to note that Taffecting and Tcritical are obtained in

an early step of the evolution process. Taffecting is obtained

using the dependence graph, as described in Section II-B.

Figure 2 shows how to determine Tcritical for a given test

purpose t. When a transition is added to Tcritical, we also

inform which kind of penalty will be used in d calculation.

C. Input sequence encoding

The population of M-GEOvsl represents the input se-

quence. M-GEOvsl uses discrete encoding of the design

variables. Each design variable of the population corre-

sponds to a species. For each species is associated a fitness

value, in contrast to GA, in which the fitness evaluation

168

input: test purpose t
Ta = getTaffecting(t)
for ∀ti ∈ Ta do

S = getSiblings(ti)
for ∀tj ∈ S do

if tj /∈ Ta then
if event(tj) == event(ti) then

addTcritical(tj , distanceFunction(ti))
else

addTcritical(tj , γ)
end if

end if
end for

end for
output: Tcritical(t)

Figure 2. Algorithm to determine Tcritical

Table I
DISTANCE FUNCTIONS

Operator Distance function d
Boolean if TRUE then 0 else K
a = b if abs(a− b) = 0 then 0 else abs(a− b) + K
a �= b if abs(a− b) �= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) + K
a ≤ b if a− b ≤ 0 then 0 else (a− b) + K
a > b if b− a < 0 then 0 else (b− a) + K
a ≥ b if b− a ≤ 0 then 0 else (b− a) + K
¬a Negation is moved inward and propagated over a

a ∧ b d(a) + d(b)
a ∨ b min(d(a), d(b))
a xor b d((a ∧ ¬b) ∨ (¬a ∧ b))

≡ min((d(a) + d(¬b)), (d(¬a) + d(b)))

is related to a configuration of the design variables (an

individual). The population consists of three parts (Figure 3):

i. input sequence size, ii. sequence of input events, and

iii. parameters of all input events. Thus all these items

are generated during the evolution process. The population

size is variable in relation to the input sequence size. If

the sequence size is 10, the population will have 10 species

representing input events, for instance. We assume that the

parameters of the input events with identical name are the

same, in this way the number of parameters is constant. For

this reason, when the parameters do not represent the same

information, they should have different names.

Figure 3. Population in M-GEOvsl

For example, a population for M1 (Figure 1) can be:

|seq| input sequence parameters

9 0 11 1 2 10 5 4 5 9 344 344 703 203 922 831 2 1 1 227

that represents the sequence seq = {card(344, 703, 203),
print(2), pin(344), select(2), withdrawal(922),
current(), done(), current(), deposit(831)}. The last

part of the population represents the following parameters:

pin, p, sb, cb, w, d, id, id1, id2 and amnt.

D. Evolution process

The evolution process of M-GEOvsl is illustrated in

Figure 4. In first step, the population is initialized ran-

domly with uniform distribution. All species are mutated

temporarily, one at a time, to obtain the fitness of the species.

The Pareto front and Pareto set are updated according to

domination concept with the solutions that cover the test

purpose. The value of each species is mutated to another

in the corresponding domain. For example, a species that

represents an input event will be mutated to another input

event. Each new population is evaluated by F1 and F2. After

this evaluation, the mutated value returns to its original one.

Figure 4. Evolution process of M-GEOvsl

In next step, one objective function Fi is randomly chosen.

All species are ranked by their fitness value in relation to

Fi. According to this ranking, one species v is selected to be

mutated using the probability distribution P ∼ k−τ , where

k is the position rank of v and τ an adjustable parameter of

M-GEOvsl. The algorithm has only the mutation operator.

As the sequence size is a species, the algorithm can generate

sequences with different numbers of input events, mutating

the sequence size. In this way, the algorithm should deal with

two situations when this sequence size is mutated: the new

value of sequence length increases or decreases the current

value. When the new value increases the current one, the

sequence is completed with random values. In the other case,

the extra input events in the sequence are ignored. Figure 5

shows different mutations. In the first case, an input event is

mutated to a value in its domain and, in the other case, the

sequence size is mutated: from the value 3 to 4, then one

input event is also added into the input sequence, and from

the value 3 to 2, then the last input event is ignored.

Figure 5. Mutations in M-GEOvsl

The stop condition is the maximum number of evaluations

of all objective functions. If this condition is not achieved,

the algorithm verifies whether a re-initialization should be

169

started. A new point in the search space is found in a re-

initialization, maintaining the solutions of the Pareto front.

To evaluate each solution, M-GEOvsl interacts with an

executable model of the EFSM M under test. M-GEOvsl

generates an input sequence and the executable model re-

ceives it as input. The executable model is instrumented

to monitor the transitions triggered during execution. A

transition is triggered when the corresponding input event is

received and the associated guard is satisfied, considering the

input parameters and/or variables involved in the condition.

It is worth noting that the terms input sequence and test

case are distinct. An input sequence consists of a sequence

of input events and their parameters. Some of the events

in this sequence, although they are part of the EFSM input

alphabet, may not correspond to a specified transition, as

the machine may not be complete. A test case, on the

other hand, is the path triggered during model execution

according to the given input sequence. As the input sequence

can contain nominal as well as unexpected events, the path

length is not necessarily equal to the sequence size. For

instance, the transition path triggered by seq (Section III-C)

is path = {t1t4t6t7t9t7t13}. Observe that |path| is 5

whereas seq has 8 input events including 3 unexpected

inputs. M-GEOvsl evaluates the input sequence using F1 and

F2 according to the transition path produced during model

execution.

IV. EXPERIMENTS

This section describes the experiments conducted using

MOST for test case generation. The experiments were aimed

at answering the research questions below:

Q1: What is the cost of using the MOST approach?

Q2: How does the Pareto front guide a user of the

MOST approach to select the test cases to be used?

Q3: How well do the test cases generated using the

MOST approach compared to others generated

with existing approaches?

In order to answer Q1, we measured MOST performance

in terms of the cost of test case generation: transition

coverage, number of objective function evaluations, test case

length and execution time. For question Q2, we analyzed

the size of the Pareto front; the wider this front, the larger

the number of alternative solutions offered to the user.

Moreover, the Pareto front gives the users information about

the relationship between Taffecting coverage and the input

sequence length. The Pareto front is also used to answer

Q3, by analyzing the solutions which are dominated or

non-dominated by the solutions obtained by Kalaji et al.’s

approach [7].

A. Case studies

The case studies presented here are two EFSMs that were

used to validate another evolutionary approach [7]. Table II

presents the subject models. Each model is described in

terms of number of states, transitions and variables. The

last column indicates the CCS (Cyclomatic Complexity of

State machine) [20] of the models. CCS is an adaption of

metrics to measure design complexity of state models and

is given by: CCS = |T | + |I| + |AG| + 2, where T is

the set of transitions, I is the set of input events and AG

is the set of atomic expressions in the guards. The ATM

model (M1) is an extension of the EFSM described in [21].

The model represents three services: deposit, withdrawal

and transfer between two accounts. The second model (M2)
shows the initiator of the INRES protocol [22]. The protocol

is a connection-oriented composed by the initiator and

the responder. The initiator of the protocol establishes a

connection and sends data. The responder receives data and

terminates connections.

Table II
EXPERIMENTAL MODELS

Models #States #Transitions #Events #Parameters CCS

M1 : ATM 10 30 13 10 77
M2 : INRES 4 16 7 2 34

B. Experimental set up

In order to apply MOST to the case studies, the steps

presented in Section III were followed. Two tools were used

in the experiments: SMC to obtain the executable models,

presented in Section III-A, and SLIM (SLIcing state based

Model) tool [10] for the dependence information. To adapt

M-GEOvsl for the problem being tackled, it is necessary

to tune the control parameter τ before starting test case

generation. For each transition, we performed 5 runs with

105 function evaluations as stopping criterion and 50 re-

initializations, with value of τ in the range [1,5] incremented

by 0.25. We consider K = 100 and γ = 1000 for the

calculation of the term d of F1. The performance of M-

GEOvsl presented the best results with τ = 3.75. It was used

a Pentium 4 with 3.00 GHz and 1 GB of RAM memory.

Once obtained the value of the sole adjustable parameter

of M-GEOvsl, the next step is to configure the algorithm

execution by setting the values that follow. The input se-

quence length could be 500 at maximum. This limit avoids

the generation of sequence length with the largest possible

integer, but long enough for the subjects. Each input event

in the sequence may range from 1 to |I|, where I is the

input alphabet of the model. The number of parameters in a

sequence is constant, as mentioned in Section III-C. Table II

presents the number of parameters for each model. The input

parameters are also considered as positive integer values.

Each transition of the subject model was taken as test

purpose. A total of 10 runs per test purpose were performed

in M-GEOvsl. For each run, the stopping criterion was

106 objective function evaluations and the number of re-

initializations was 100. The value of the parameter τ = 3.75
was used for the mutation operation, considering the results

170

of the tuning phase. For the calculation of F1, we considered

K = 100 and γ = 1000.

C. Results

Q1 : Using MOST approach, we obtained 100%

coverage of the transitions of both models M1 and M2,

meaning that at least one path was generated to cover each

transition of the models. As a multi-objective approach,

M-GEOvsl can produce more than one successful solution

that achieves the test purpose. Due to space limitation,

Tables III and IV show only the shortest path obtained for

each transition of ATM and INRES, respectively. It also

presents the path length, the corresponding input sequence

size and the number of objective function evaluations to find

the solution. It is worth noting that although the stopping

condition for M-GEOvsl was 106 evaluations, less than half

of the number of objective function evaluations is necessary

to obtain a solution, on average. Each run of M-GEOvsl took

approximately 22.28 seconds.

Table III
ATM: SHORTEST PATH FOUND FOR EACH TRANSITION

ti Path |Path| |Seq| #Eval

t1 t1 1 1 437560
t2 t1t2 2 2 478392
t3 t1t2t2t2t3t1 6 7 666060
t4 t1t4 2 4 329642
t5 t1t4t5t23 4 17 8934
t6 t1t4t6t7t9 5 11 397514
t7 t1t4t5t8t10t7t9 7 22 588480
t8 t1t4t6t8t20t22 6 15 644208
t9 t1t4t5t7t9 5 13 423358
t10 t1t4t5t8t10 5 17 258314
t11 t1t4t5t7t11 5 25 66796
t12 t1t4t6t23t1t4t6t7t12 9 23 48324
t13 t1t4t6t7t9t7t13 7 28 732390
t14 t1t4t5t7t14t15t14 7 27 269752
t15 t1t4t5t7t13t15 6 21 835058
t16 t1t4t6t25t26t7t12t16t13t16t9t8t10 13 45 879412
t17 t1t4t6t8t17t22t10t7t9 9 46 889210
t18 t1t4t6t7t9t7t9t8t17t22t18 11 32 209604
t19 t1t4t5t25t26t8t19 7 18 883308
t20 t1t4t6t25t26t8t20t22 8 28 409840
t21 t1t4t5t7t9t8t19t21t18t21t19 11 37 826070
t22 t1t4t6t7t9t8t20t22t18 9 39 239506
t23 t1t4t5t7t9t23 6 19 976300
t24 t1t4t24 3 7 868388
t25 t1t4t5t8t10t25 6 20 772902
t26 t1t4t5t8t10t25t26 7 17 662680
t27 t1t4t5t8t18t21t10t25t27t30t26t23 12 39 602256
t28 t1t4t5t25t28 5 39 458002
t29 t1t4t6t8t10t25t28t29t28 9 41 77010
t30 t1t4t5t25t28t30 6 15 289372

Average: 6.63 22.50 507621.40

Q2 : Each solution found by M-GEOvsl represents a

point in the Pareto front. The Pareto front shows the trade-

off between the objective functions F1 and F2. To illustrate,

we present the Pareto front for transition t4 of M1 (Figure 6)

and for transition t12 of M2 (Figure 7). When the solutions

traverse more transitions of Taffecting (i.e, minimizing F1),

the input sequence is the longest one. On the other hand, for

the shorter input sequence (i.e., minimizing F2), we have the

worst coverage of the transitions of Taffecting .

Table IV
INRES: SHORTER PATH FOUND FOR EACH TRANSITION

ti Path |Path| |Seq| #Eval

t0 t0 1 1 7944
t1 t0t1 2 2 585602
t2 t0t1t2 3 4 102036
t3 t0t1t3t13 4 4 83638
t4 t0t12t12t1t3t3t3t3t4 9 14 95694
t5 t0t1t2t5t8 5 5 117010
t6 t0t1t3t3t2t5t7t5t6 9 12 699532
t7 t0t1t2t5t8t7 6 8 586992
t8 t0t1t13t1t2t5t8t8 8 8 649950
t9 t0t1t2t5t8t10t8t8t9 9 11 882778
t10 t0t1t2t5t8t10t7t5 8 9 146990
t11 t0t1t2t5t8t10t8t8t11 9 19 808730
t12 t0t12t1 3 3 784220
t13 t0t1t13 3 4 716142
t14 t0t1t2t14 4 5 848320
t15 t0t1t2t5t10t8t15t1 8 10 477806

Average: 5.69 7.44 474586.50

Figure 6. ATM: Pareto front for t4

Figure 7. INRES: Pareto front for t12

Figure 8 and 9 show the number of points in the Pareto

front for each transition of M1 and M2, respectively. It can

be noted that, in general, the Pareto front has more than

one point, which means that M-GEOvsl obtains more than

one path, that can be used to traverse the test purpose. The

171

more solutions in the Pareto front, the more alternatives the

test team have. For example, when test case execution time

is high, shorter test cases can be selected. However, if the

goal is to reduce the number of test cases, the option may

be the use of larger test cases, covering more transitions of

Taffecting . Thus, it is possible to cover several transitions

at once, generating a smaller number of test cases and

obtaining also a reduction in the cost of test case generation.

Figure 8. ATM: Number of points in the Pareto front

Figure 9. INRES: Number of points in the Pareto front

When the Pareto front has one point, only one solution

was generated. Then, this solution dominated all others gen-

erated by M-GEOvsl in relation to both objective functions

F1 and F2. This means that this solution presented better

values considering F1 and F2 than other generated solutions.

For instance, there is only one path for the transition t24 of

M1. In this case, M-GEOvsl found the shortest path from the

initial state to t24 (path24 = {t1t4t24}). To trigger t24, the

transitions t1 and t4 should be traversed first and the guards

g(t4) and g(t24) should be satisfied. t4 is triggered as long

as the provided pin is the one expected and the number of

attempts to enter the correct pin is less than 3; while g(t24)
is only satisfied when the select language id is equal to

zero. M-GEOvsl generated the parameters values to allow

path24 to be traversed: the parameters p and pin received

the same value, then the context variable attempts remained

zero, and id received value zero. Observing Table III, the

length of the input sequence generated for t24 is 7, then the

sequence contains 4 unexpected input events. Furthermore,

from Table III and IV, it is worth noting that the test case

length vary according to the test purpose.

Q3 : For the comparison with existing works, the

closest we could find of our approach was the works of

Kalaji et al. [6], [7]. Although a mono-objective approach

is applied, they use only the model for test generation, that

is, the system source code is not necessary, such as in [16].

We compare the results of MOST to the test cases obtained

in their recent work [7] that also considers M1 and M2.

A genetic algorithm was used to find a path to cover each

transition of the models. They fixed the length of all paths

in 10 and performed 1000 generations with a population of

25 individuals. Each path was evaluated using F1 and F2,

obtaining the point pk in the objective function space. For

all transitions, the Pareto front points pp obtained by MOST

were 70.77% non-dominated by pk for M1 and 96.20% for

M2, on average. Then, in general, pk is dominated by the

Pareto front, that means the Pareto front has better results

considering F1 and F2 than pk. For instance, Figures 6 and

7 show the comparison between the Pareto front and pk
(indicated by �). There are situations in which pk dominates

some points of the Pareto front pp. In this case, considering

F1, we analyzed that the path length of these points pp is

smaller than 10. As pp presents smaller path than pk, pp
does not contain as many transitions of Taffecting as pk.

It is worth remembering that F2 represents the size of the

input sequence that can have unexpected inputs, and not the

path length. When pk dominates the points pp in relation to

F2, although pp is longer solution, pp has more transitions

of Taffecting . Note that in Figure 6 the solution pk for M1

is not dominated by any other solution found in MOST.

Therefore, in this case, the Pareto front can include the point

pk. For M2, Figure 7 shows that the point pk is clearly

dominated by pp and can not be part of the Pareto front.

V. CONCLUSIONS

This paper presents the MOST approach, a search-based

testing technique for test case generation from EFSM.

MOST uses a multi-objective evolutionary algorithm to

allow the generation of test cases to cover a given transition

(test purpose). Then more than one successful path can be

found to cover the test purpose. Using MOST, we can obtain

the transition paths (test cases) as well as the data to trigger

them. In the evolution process, the control and data aspects

of the model are considered in one step. The value of the

input sequence length can be found automatically, then it is

not necessary to establish a priori the test case size as other

approaches. In order to guide the search for the test purpose,

we proposed an objective function that uses information

gathered from a dependence analysis of the model, so that

a solution is the one that covers most of the transitions on

172

which the test purpose depends. We consider both control

and data dependence analysis.

The proposed approach uses an executable model for test

case generation, to avoid infeasible path generation, which

is a problem when considering control and data aspects. By

executing the model in the search for the solution, we can

be sure that the solution is feasible, at least at model level.

Moreover, the model execution can be more attractive than

executing the system implementation, since SBST requires

many executions of the system under test. We can also use

the executable model to validate the EFSM, an important

issue as the test cases in model-based testing are derived

from the model. Furthermore, model-based evolutionary

testing is useful when the source is not available.

The results of MOST were compared to another search-

based testing approach for EFSM. Considering F1 and F2,

we obtained better or similar results, in general.

Further experiments are being performed, taking into

account other models, not only the ones used as benchmark,

but also from real-world applications. A future work is to

consider only the parameters involved in the generated input

sequence, instead of optimizing all parameters of the model.

ACKNOWLEDGMENT

This research is supported by CAPES, CNPq and Serasa

Experian. The authors also wish to thank Zheng Li for

providing the dependence analysis of the models.

REFERENCES

[1] G. Bochmann and A. Petrenko, “Protocol testing: Review of
methods and relevance for software testing,” in International
Symposium on Software Testing and Analysis (ISSTA‘94),
1994, pp. 109–124.

[2] B. Sarikaya, G. Bochmann, and E. Cerny, “A test design
methodology for protocol testing,” IEEE Transactions on
Software Engineering, vol. 13, no. 5, pp. 518–531, May 1987.

[3] C. Bourhfir, R. Dssouli, and E. M. Aboulhamid, “Automatic
test generation for EFSM-based systems,” University of Mon-
treal, Canada, Tech. Rep. IRO 1043, Aug. 1996.

[4] A. Y. Duale and M. U. Uyar, “A method enabling feasible
conformance test sequence generation for EFSM models,”
IEEE Trans. on Computers, vol. 53, no. 5, pp. 614–627, 2004.

[5] P. McMinn, “Search-based software test data generation: a
survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[6] A. S. Kalaji, R. M. Hierons, and S. Swift, “Generating
feasible transition paths for testing from an extended finite
state machine,” in Proc. ICST’09, 2009, pp. 230–239.

[7] A. S. Kalaji, R. Hierons, and S. Swift, “Generating feasible
transition paths for from an extended finite state machine
(EFSM) with the counter problem,” in Proc. SBST’10: 3rd
Int. Workshop on Search-Based Software Testing, 2010, pp.
232–235.

[8] T. Yano, E. Martins, and F. L. De Sousa, “Generating feasible
test paths from an executable model using a multi-objective
approach,” in Proc. SBST’10: 3rd Int. Workshop on Search-
Based Software Testing, 2010, pp. 236–239.

[9] P. McMinn and M. Holcombe, “Evolutionary testing of state-
based programs,” in Proc. GECCO’05, 2005, pp. 1013–1020.

[10] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt,
“A theoretical and empirical study of EFSM dependence,” in
Proc. ICSM’09: 25th IEEE Int. Conf. on Software Mainte-
nance, Sep. 2009, pp. 287–296.

[11] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and
L. Tratt, “Control dependence for extended finite state ma-
chines,” in Proc. FASE ’09: 12th Int. Conf. on Fundamental
Approaches to Software Engineering, 2009, pp. 216–230.

[12] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The
species per path approach to searchbased test data genera-
tion,” in Proc. ISSTA’06, 2006, pp. 13–24.

[13] R. Lefticaru and F. Ipate, “Functional search-based testing
from state machines,” in Proc. ICST ’08, 2008, pp. 525–528.

[14] K. Lakhotia, M. Harman, and P. McMinn, “A multi-objective
approach to search-based test data generation,” in Proc.
GECCO’07, 2007, pp. 1098–1105.

[15] S. Yoo and M. Harman, “Pareto efficient multi-objective test
case selection,” in Proc. ISSTA ’07, 2007, pp. 140–150.

[16] A. Baresel, H. Pohlheim, and S. Sadeghipour, “Structural and
functional sequence test of dynamic and state-based software
with evolutionary algorithms,” in Proc. GECCO’03, 2003, pp.
2428–2441.

[17] A. R. Cavalli, D. Lee, C. Rinderknecht, and F. Zaı̈di, “Hit-or-
jump: An algorithm for embedded testing with applications
to IN services,” in Proc. of the IFIP TC6 WG6.1. Deventer,
The Netherlands: Kluwer, B.V., 1999, pp. 41–56.

[18] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function
design to improve evolutionary structural testing,” in Proc.
GECCO’02, 2002, pp. 1329–1336.

[19] N. Tracey, J. Clark, J. McDermid, and K. Mander, “A search-
based automated test-data generation framework for safety-
critical systems,” Systems engineering for business process
change: new directions, pp. 174–213, 2002.

[20] S. Wagner and J. Jürjens, “Model-based identification of
fault-prone components,” in Proc. EDCC-5: Fifth European
Dependable Computing Conference, volume 3463 of LNCS.
Springer, 2005, pp. 435–452.

[21] B. Korel, I. Singh, L. Tahat, and B. Vaysburg, “Slicing of
state-based models,” in Proc. ICSM’03: Int. Conf. on Software
Maintenance, 2003, pp. 34–43.

[22] D. Hogrefe, “OSI formal specification case study: the inres
protocol and service,” University of Bern, Tech. Rep. IAM-
91-012, 1991.

173

