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Tokamak equilibria with strong toroidal current
density reversal

G.O. Ludwig1∗, P. Rodrigues2, J.P.S. Bizarro2

1Laboratório Associado de Plasma, INPE, 12227-010 São José dos Campos, SP, Brasil.

2Centro de Fusão Nuclear, Associação Euratom-IST, 1049-001 Lisboa, Portugal.

Abstract

The equilibrium of large magnetic islands in the core of a tokamak in conditions
of strong toroidal current density reversal is investigated by a new method. The
method uses distinct spectral representations to describe each simply connected re-
gion as well as the containing shell that substitutes for the external plasma region.
Equivalent surface current densities are defined on the boundaries of the islands and
on the thin shell, giving a straightforward formulation to the interaction between
regions. The equilibrium of the islands-shell system is determined by matching mo-
ments of the Dirichlet boundary conditions. The magnetohydrodynamic stability
against a class of tilting displacements is examined by means of an energy principle.
It is found out that the symmetric islands are stable but the nonsymmetric system
presents a bifurcation in the equilibrium.

PACS numbers: 28.52.Av Theory, design, and computerized simulation; 52.55.Fa Toka-

maks, spherical tokamaks; 52.65.Kj Magnetohydrodynamic and fluid equation.

1 Introduction

A succession of experiments that spanned two decades [1, 2, 3, 4] have shown the feasibil-
ity of tokamak operation in the alternating current (AC) regime. These configurations are
closely related to the current-hole regime observed in large tokamak experiments [5, 6].
Although the AC experiments in low temperature plasmas clearly show the formation of
two large magnetic islands with opposite currents during the current reversal phase [7],
the magnetic topology in the plasma core of current-hole experiments remains unresolved.
It is not even clear if the toroidal current reverses in the core of current holes, as further
experiments indicated a nearly zero current clamping in the central region [8]. Neverthe-
less, tokamak equilibria computations have shown that toroidal current reversal in the
plasma core is compatible with the accuracy of present-day experiments [9]. The key to
the seeming discrepancy lies in allowing for non-nested flux surfaces in the analysis of
such plasmas, a phenomenon that is apparent in the AC operation of tokamaks but not
always taken into account in current-hole studies.

Several theoretical papers addressed the problem of current reversal equilibria in tokamak
plasmas [10, 11, 12, 13, 14, 15]. The first paper in this list numerically examined the

∗Corresponding author. E-mail address: ludwig@plasma.inpe.br
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current density reversal in force-free equilibria with non-nested flux surfaces [10]. A
second series of papers analytically solved the Grad-Shafranov equation with a finite
plasma pressure and a toroidal current density linearly dependent on the flux function, for
circular and rectangular plasma cross-sections [11, 12, 13]. These results were numerically
extended using the finite element method and considering parabolic profiles of the toroidal
current density in terms of the flux function, for arbitrary plasma cross-sections [14].
Finally, numerical solutions of the recursively perturbed Grad-Shafranov equation for
reversed equilibria were obtained without imposing particular models for the pressure
and toroidal current density profiles [15]. In common, all these studies have shown that
toroidal current reversal is necessarily accompanied by non-nested flux surfaces.

The present paper introduces a method to evaluate the equilibrium of magnetic islands
in the core of a tokamak plasma with strong toroidal current reversal. The method is
based on a simple model of the tokamak core described as follows. The core is enclosed
by a magnetic flux surface (thin shell) which contains the set of idealized magnetic islands.
The thin shell replaces the external region of the plasma, that may carry a substantial
current density necessary for the equilibrium. Both the flux containing shell and the flux
surfaces inside the islands are described in Section 2 using spectral representations with
different poloidal angles defined for the shell centerline and for each simply connected re-
gion. This leads to a straightforward geometrical representation for an otherwise complex
configuration of non-nested flux surfaces. A Fourier series expansion is used to describe
the surface current density in the containing shell. The current densities in the islands
may have large values and opposite signs but the current density between the contain-
ing shell and each island is neglected, resulting in a small, possibly zero total current
in the plasma core. In Section 3 the plasma equilibrium inside each magnetic island is
evaluated by a fourth-order radial series expansion of the variational moments solution to
the Grad-Shafranov equation, compatible with but not limited to the large-aspect-ratio
configuration of the islands. Then, the equilibrium of the system is determined in Sec-
tion 4 by taking moments of the Dirichlet problem both on the containing shell and on
the boundary of each contained island. The maintaining magnetic field on the containing
shell (Neumann condition) is used in Section 5 to determine the currents in a simple set of
external equilibrium coils. These coils do not correspond to the actual poloidal field coils
system in the JT-60U tokamak, which is used as an example, but take a mere illustrative
role of possible equilibria. Finally, a preliminary analysis of the magnetohydrodynamic
stability of such system is carried out in Section 6 by evaluating the energy change asso-
ciated with a small tilting displacement of the islands. In this way, it is demonstrated by
example that a macroscopic, circuit-like approach can be used to analyze complex equilib-
ria with small sets of islands in strongly-reversed-shear tokamak plasmas or in alternating
current tokamaks. A summary and concluding remarks are given in Section 7.

2 Spectral representation of flux surfaces

The following parametric representation in cylindrical coordinates of the flux surfaces
inside the magnetic islands includes Shafranov shift, elongation, triangularity and quad-
rangularity effects (higher order corrections can be included in a straightforward manner

2



[16]):

Ri(ρ, θ, t) = R0,i(ρ, t) + ρ cos θ

+
ρ2

ai (t)
[S3,i (ρ, t) (1− cos θ) + A3,i (ρ, t) sin θ]

−ρ [S2,i (ρ, t) (1− cos 2θ)− A2,i (ρ, t) sin 2θ]

− ρ2

ai (t)
[S3,i (ρ, t) (1− cos 3θ)− A3,i (ρ, t) sin 3θ] ,

Zi(ρ, θ, t)

ei (ρ, t)
=

Z0,i (ρ, t)

ei (ρ, t)

+ρ sin θ +
ρ2

ai (t)
[A3,i (ρ, t) (1− cos θ)− S3,i (ρ, t) sin θ]

−ρ [A2,i (ρ, t) (1− cos 2θ) + S2,i (ρ, t) sin 2θ]

− ρ2

ai (t)
[A3,i (ρ, t) (1− cos 3θ) + S3,i (ρ, t) sin 3θ] .

(1)

Here ρ = ai (t) designates the edge of the island i, R0,i(ρ, t) is the major radius, ei (ρ, t)
is the elongation coefficient, and Sn,i (ρ, t), An,i (ρ, t) are the dimensionless symmetric
and antisymmetric coefficients, respectively. Symmetry is defined with respect to the
midplane Zi(ρ, 0, t) = Z0,i (ρ, t). In general, the coefficients in the spectral representation
are functions of the radial coordinate ρ and time t. In the equilibria presented in this
paper it is assumed that at least two islands, denoted by the subscripts i and j, have been
formed. The containing shell, which corresponds to the outermost flux surface defining
the plasma core, has the simple representation:

Rs(θ) = R0,s + as cos θ,
Zs(θ) = es as sin θ.

(2)

The shell geometry is fixed by the parameters

R0,s = 3.45 m, as = 0.82 m, es = 0.85, (3)

which correspond to numerical equilibrium calculations performed for the JT-60U toka-
mak plasma core in conditions of strong toroidal current density reversal [17]. The main
geometrical parameters of the JT-60U tokamak are: major radius R0 = 3.4 m and mi-
nor radius a = 1.0 m. The toroidal surface current distribution in the containing shell is
represented by a truncated Fourier series

KT,s (θ, t) =
1

2πhθ,s (θ)

(
IT,s (t) +

ns∑
m=1

[
I(s)
m (t) cosmθ + I(a)

m (t) sinmθ
])

, (4)

where the poloidal scale factor is given as a function of the poloidal angle θ for the shell
geometry

hθ,s (θ) =

√(
∂Rs

∂θ

)2

+

(
∂Zs
∂θ

)2

= as
√

1 + (e2
s − 1) cos2 θ. (5)

The total current in the shell is calculated by the line integral

IT,s (t) =

∫ 2π

0

KT,s (θ, t)hθ,s (θ) dθ. (6)
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Figure 1: Set of two symmetric islands inside a containing shell representing the core of
a large tokamak in a strong toroidal current density reversal configuration.

Figure 1 illustrates the flux surfaces inside two islands contained by a thin shell rep-
resented by the thick continuous line. This distribution of flux surfaces corresponds to
the symmetric equilibrium calculated in Section 4. The dashed line corresponds to the
main geometrical parameters of the JT-60U tokamak given above in the text. The small
squares surrounding the torus illustrate the set of poloidal field coils used in Section 5 to
establish the external equilibrium.

3 Plasma equilibrium in the magnetic islands

The Grad-Shafranov equation for the plasma equilibrium inside each magnetic island
is solved by a Taylor series expansion to fourth-order in the radial coordinate ρ. A
consistent power series expansion of the poloidal flux function near the magnetic axis of
each island leads to the simplified spectral representation (neglecting higher than fourth-
order corrections in the expansion of the poloidal flux function):

Ri(ρ, θ, t) ∼= Rm,i (t) + ρ cos θ

+
ρ2

2

(
R′′0,i(0, t)− 4S ′2,i (0, t) sin2 θ + 2A′2,i (0, t) sin 2θ

)
−2

ρ3

ai (t)

(
S ′3,i (0, t) sin θ − A′3,i (0, t) cos θ

)
sin 2θ,

Zi(ρ, θ, t) ∼= Zm,i (t) + ρ κm,i (t) sin θ

+
ρ2

2

[
Z ′′0,i(0, t)− 2κm,i (t)

(
S ′2,i (0, t) sin 2θ + A′2,i (0, t) (1− cos 2θ)

)]
+
ρ3

2

[
e′′i (0, t)− 8

κm,i (t)

ai (t)

(
S ′3,i (0, t) cos θ + A′3,i (0, t) sin θ

)
cos θ

]
sin θ

−ρ4e′′i (0, t)
(
S ′2,i (0, t) cos θ + A′2,i (0, t) sin θ

)
sin θ,

(7)
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where the coordinates pair Rm,i (t), Zm,i (t) gives the position of the magnetic axis, κm,i (t)
corresponds to the elongation on axis, and the apostrophe indicates a partial derivative
with respect to ρ. Now, according with the variational moments solution of the Grad-
Shafranov equation [18], the Fourier coefficients R0,i, Z0,i, ei, S2,i, A2,i, S3,i and A3,i of
the spectral representation satisfy a set of coupled Euler-Lagrange equations. Expanding
the Euler-Lagrange equations in power series in ρ and applying the geometrical boundary
conditions at the edges ρ = ai (t) of the islands one obtains the lowest order solutions:

R0,i(ρ, t) ∼= Rm,i (t)− [Rm,i (t)−R0,i(ai (t))]
ρ2

a2
i (t)

,

Z0,i(ρ, t) ∼= Zm,i (t) +
2κm,i (t)

(
3− κ2

m,i (t)
)

3 + κ2
m,i (t)

A2,i (ai (t))
ρ2

ai (t)
,

ei (ρ, t) ∼= κm,i (t) + [ei (ai (t))− κm,i (t)]
ρ2

a2
i (t)

,

S2,i (ρ, t) ∼= S2,i (ai (t))
ρ

ai (t)
,

A2,i (ρ, t) ∼= A2,i (ai (t))
ρ

ai (t)
,

S3,i (ρ, t) ∼= S3,i (ai (t))
ρ

ai (t)
,

A3,i (ρ, t) ∼= A3,i (ai (t))
ρ

ai (t)
.

(8)

The radial position Rm,i (t) of the magnetic axis is given in terms of both the major radius
R0,i(ai (t)) and of the symmetric triangularity coefficient S2,i (ai (t)) at the boundary of
the island, of the elongation κm,i (t) at the magnetic axis, and of the second derivatives
on axis of the plasma pressure profile p′′i (0, t) = ∂2pi (0, t) /∂ρ

2 and of the toroidal current
profile I ′′T,i (0, t) = ∂2IT,i (0, t) /∂ρ

2 by

Rm,i (t) ∼=
R0,i(ai)

2
− 2aiS2,i (ai)

1 + 3κ2
m,i

+

√√√√(R0,i(ai)

2
− 2aiS2,i (ai)

1 + 3κ2
m,i

)2

+
κ2
m,ia

2
i

2
(
1 + 3κ2

m,i

) (1−
8π2

(
1 + κ2

m,i

)2
p′′i (0)

κ2
m,iµ0I ′′T,i (0)2

)
,

(9)
where the time dependence of the minor radius ai, of the elongation κm,i, and of the
derivatives p′′i (0) and I ′′T,i (0) was omitted for simplicity. Likewise, the vertical position
Zm,i (t) of the magnetic axis is given in terms of the major vertical position Z0,i(ai (t)), of
the antisymmetric triangularity coefficient A2,i (ai (t)) and of the elongation κm,i (t) by

Zm,i (t) ∼= Z0,i(ai)−
2κm,i

(
3− κ2

m,i

)
3 + κ2

m,i

A2,i (ai) ai. (10)

5



Finally, the magnetic axis elongation satisfies the high-order polynomial equation

3κm,i
(
κ2
m,i + 3

)2 {
2a2

iRm,i

[
R0,i(ai)

(
3κ4

m,i + 8κ2
m,i + 1

)
− 2Rm,i

(
2κ4

m,i + 13κ2
m,i + 3

)]
+a4

i

(
κ4
m,i + 6κ2

m,i + 1
)
− 4R2

m,i (Rm,i −R0,i(ai))
2 (3κ4

m,i + 2κ2
m,i + 3

)}
µ0I

′′
T,i (0)2

+6a2
iR

2
m,i

(
κ2
m,i + 3

)2 (
κ4
m,i + 18κ2

m,i + 5
)
ei (ai)µ0I

′′
T,i (0)2

−24π2a2
iκm,i

(
κ2
m,i + 3

)2 (
κ2
m,i + 1

)3
[a2
i + 8Rm,i (Rm,i −R0,i(ai))] p

′′
i (0)

+12aiRm,iκm,i
(
κ2
m,i + 3

)2 [
a2
i

(
3κ4

m,i + 2κ2
m,i − 5

)
−8Rm,i (Rm,i −R0,i(ai))

(
3κ4

m,i + 8κ2
m,i + 3

)]
S2,i (ai)µ0I

′′
T,i (0)2

−192π2a3
iRm,iκm,i

(
κ2
m,i + 3

)2 (
κ2
m,i + 1

)3
S2,i (ai) p

′′
i (0)

−12a2
iR

2
m,iκm,i

(
κ2
m,i + 3

)2 (
19κ4

m,i + 62κ2
m,i + 23

)
S2

2,i (ai)µ0I
′′
T,i (0)2

−120a2
iR

2
m,iκm,i

(
κ2
m,i + 3

)2 (
κ4
m,i − 1

)
S3,i (ai)µ0I

′′
T,i (0)2

+a4
iR

2
m,iκm,i

(
κ2
m,i + 3

)2 (
κ4
m,i − 1

)
µ0I

′′
T,i (0) I

(4)
T,i (0)

−12a2
iR

2
m,iκm,i

(
κ2
m,i − 1

) (
25κ6

m,i + 337κ4
m,i + 555κ2

m,i + 171
)
A2

2,i (ai)µ0I
′′
T,i (0)2 = 0.

(11)
The elongation κm,i on axis can be determined numerically using the Newton-Raphson
formula

κ
(k+1)
m,i = κ

(k)
m,i −

f
(
κ

(k)
m,i

)
f ′
(
κ

(k)
m,i

) , (12)

where f (κm,i) = 0 designates the above polynomial equation for κm,i obtained from the

Euler-Lagrange equation for ei (ρ). The value of the elongation at the edge, κ
(0)
m,i = ei (ai),

is taken as trial solution, giving a very good approximation to the true root using the two
or three steps Newton-Raphson method.

In this way, the plasma equilibrium in each island is described by seven edge-parameters,
namely, ai, R0,i(ai), ei (ai), S2,i (ai), A2,i (ai), S3,i (ai) and A3,i (ai), plus the plasma pres-

sure profile and the toroidal current profile derivatives p′′i (0), I ′′T i (0) and I
(4)
T,i (0) on the

magnetic axis of the island. The major vertical position Z0,i (t) is irrelevant for the inter-
nal equilibrium of the island (only the difference Z0,i(ai)−Zm,i (t) matters) but it affects
the external equilibrium. Of course, starting with this approximation a more precise solu-
tion of the Grad-Shafranov equation may be sought for, but the present one carries most
of the relevant information about the islands equilibria in a very simple way.

4 Equilibrium calculation by matching moments

The shape of each island can be determined by matching moments of the Dirichlet condi-
tions on the containing shell and on the islands’ edges. The total poloidal flux Φi (ai, θi)
on the edge of island i, for example, is given by the sum of the self-flux Φii and the fluxes
Φji and Φsi produced by the island j and by the shell s on the boundary of i, respectively.
These fluxes can be written in terms of the equivalent toroidal surface current densities
on the respective boundaries:

Φi (ai, θi) = µ0

∮
`i

KT,i (ai, θ
′
i)G(θi; θ

′
i) d`(θ

′
i) + µ0

∮
`j

KT,j (aj, θj)G(θi; θj) d`(θj)

+µ0

∮
`s

KT,s (θs)G(θi; θs) d`(θs).

(13)
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Here θi, θj and θs designate the poloidal angle variables along the boundaries of i, j and s,
respectively, with similar expressions for Φj (aj, θj) and Φs (as, θs). The Green’s function
G is given in terms of the complete elliptic integrals K (m) and E (m) by

G (θ; θ′) =
√
R (θ)R (θ′)

(
[2−m (θ, θ′)]K [m (θ, θ′)]− 2E [m (θ, θ′)]√

m (θ, θ′)

)
m (θ, θ′) =

4R (θ)R (θ′)

[R (θ) +R (θ′)]2 + [Z (θ)− Z (θ′)]2
(0 6 m 6 1)

(14)

where R (θ) = R (a, θ) and Z (θ) = Z (a, θ) denote either the boundary of each island or
the shell centerline given in parametric form by the spectral representations; and θ, θ′

indicate the field point and the source point, respectively. The surface current density
KT,s (θ) on the shell centerline is given by the Fourier series defined in Section 2. The
equivalent toroidal surface current density on the flux surfaces inside each island is defined
by

KT (ρ, θ) =
n̂ · ∇ΦP

2πµ0hζ (ρ, θ)
=

|∇ρ|
2πµ0hζ (ρ, θ)

dΦP

dρ
=

1

µ0

(
hθ (ρ, θ)

2π
√
g (ρ, θ)

)
dΦP

dρ
, (15)

where ρ, θ, ζ form a right-handed flux coordinates system, and ΦP (ρ) is the poloidal
flux contained by a given flux surface in the island (the total poloidal flux between the
symmetry axis and the given flux surface is Φ = Φm − ΦP , where Φm is the value of
Φ on the magnetic axis). The geometric factors in this formula, besides the previously

defined poloidal scale factor hθ (ρ, θ) =
√

(∂R/∂θ)2 + (∂Z/∂θ)2, are the toroidal scale

factor hζ (ρ, θ) = R (ρ, θ) (distance to the symmetry axis) and the Jacobian

√
g (ρ, θ) = R (ρ, θ)

(
∂R

∂ρ

∂Z

∂θ
− ∂R

∂θ

∂Z

∂ρ

)
. (16)

These quantities can be easily evaluated from the spectral representations and correspond-
ing Fourier coefficients given in Sections 2 and 3. The relation between the poloidal flux
function ΦP and the total toroidal current IT contained by a flux surface is

dΦP

dρ
=
IT (ρ)

K (ρ)
, (17)

where

K (ρ) =
1

2πµ0

∮
`

(
hθ (ρ, θ)
√
g (ρ, θ)

)
d`(θ) =

1

µ0

〈
h2
θ (ρ, θ)
√
g (ρ, θ)

〉
θ

. (18)

The magnetic coefficientK (ρ) can be evaluated analytically by the method of residues [16].
But, the analytic results are convenient only in simple or limiting cases. In general, the
poloidal-angle averages can be numerically calculated by Gauss-Chebyshev quadrature
with adequate precision using few terms (n > 2N where N is the Fourier series order in
the spectral representation; it may be advantageous to oversample such that n ≥ 4N):

〈f (θ)〉θ =
1

2π

∫ 2π

0

f (θ) dθ ∼=
1

2n

n∑
k=1

[f (θk) + f (π + θk)] . (19)

Here θk = (2k − 1) π/ (2n), which corresponds to an optimum integration mesh in the
poloidal direction. For symmetric integrands this reduces to〈

f (s) (θ)
〉
θ

=
1

π

∫ π

0

f (s) (θ) dθ ∼=
1

n

n∑
k=1

f (s) (θk) . (20)
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Now, one can take symmetric

Φi (ai) δn,0 = L
(s)
ii,nIT,i +M

(s)
ji,nIT,j +M

(s,s)
si,0nIT,s +

ns∑
m=1

(
M

(s,s)
si,mnI

(s)
m +M

(a,s)
si,mnI

(a)
m

)
(21)

and antisymmetric

0 = L
(a)
ii,nIT,i +M

(a)
ji,nIT,j +M

(s,a)
si,0nIT,s +

ns∑
m=1

(
M

(s,a)
si,mnI

(s)
m +M

(a,a)
si,mnI

(a)
m

)
(22)

moments of the flux function Φi (ai, θi) = Φi (ai) =constant (Dirichlet condition) on the
boundary of the island i (note that the shell is assumed up-down symmetric but not the
islands). The “self” and “mutual” inductance coefficients are defined by

L
(s)
ii,n =

1

Ki (ai)

〈〈(
h2
θ (ai, θ

′
i)√

g (ai, θ′i)

)
G(θi; θ

′
i)

〉
θ′i

cosnθi

〉
θi

,

M
(s)
ji,n =

1

Kj (aj)

〈〈(
h2
θ (aj, θj)√
g (aj, θj)

)
G(θi; θj)

〉
θj

cosnθi

〉
θi

,

M
(s,s)
si,mn = µ0

〈
〈G(θi; θs) cosmθs〉θs cosnθi

〉
θi
,

M
(a,s)
si,mn = µ0

〈
〈G(θi; θs) sinmθs〉θs cosnθi

〉
θi
,

(23)

and

L
(a)
ii,n =

1

Ki (ai)

〈〈(
h2
θ (ai, θ

′
i)√

g (ai, θ′i)

)
G(θi; θ

′
i)

〉
θ′i

sinnθi

〉
θi

,

M
(a)
ji,n =

1

Kj (aj)

〈〈(
h2
θ (aj, θj)√
g (aj, θj)

)
G(θi; θj)

〉
θj

sinnθi

〉
θi

,

M
(s,a)
si,mn = µ0

〈
〈G(θi; θs) cosmθs〉θs sinnθi

〉
θi
,

M
(a,a)
si,mn = µ0

〈
〈G(θi; θs) sinmθs〉θs sinnθi

〉
θi
.

(24)

Similar coefficients can be defined for the poloidal flux function Φj (aj) =constant on
the boundary of the island j, with IT,i = IT,i (ai) and IT,j = IT,j (aj) denoting the total

toroidal currents in the islands i and j, respectively. Note that L
(s)
ii,0 = Li,ext gives exactly

the external inductance of the island i under the assumption of constant Φi (ai). The
coefficients Mji,n and Msi,mn multiplied by the corresponding currents give the n-th order
moments of the fluxes produced on the island i by the island j and by the m-th Fourier
component of the shell current, respectively. They do not correspond to the actual mu-
tual inductance coefficients between islands and shell. Indeed, the mutual inductance
coefficient between the islands i and j is given by

Mji = Mij =
µ0

IT,i (ai) IT,j (aj)

∮
`i

KT,i (ai, θi) d`(θi)

∮
`j

KT,j (aj, θj)G(θi; θj) d`(θj)

=
1

µ0Ki (ai)Kj (aj)

〈(
h2
θ (ai, θi)√
g (ai, θi)

)〈(
h2
θ (aj, θj)√
g (aj, θj)

)
G(θi; θj)

〉
θj

〉
θi

,

(25)
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and between the island i and the shell s by

Msi = Mis =
1

Ki (ai)

〈(
h2
θ (ai, θi)√
g (ai, θi)

)〈(
2πhθ,s (θs)KT,s (θs)

IT,s

)
G(θi; θs)

〉
θs

〉
θi

=
1

Ki (ai)

〈(
h2
θ (ai, θi)√
g (ai, θi)

)
〈G(θi; θs)〉θs

〉
θi

+
ns∑
m=1

I
(s)
m /IT,s
Ki (ai)

〈(
h2
θ (ai, θi)√
g (ai, θi)

)
〈G(θi; θs) cosmθs〉θs

〉
θi

+
ns∑
m=1

I
(a)
m /IT,s
Ki (ai)

〈(
h2
θ (ai, θi)√
g (ai, θi)

)
〈G(θi; θs) sinmθs〉θs

〉
θi

=
1

IT,s

[
M

(s)
si,0IT,s +

ns∑
m=1

(
M

(s)
si,mI

(s)
m +M

(a)
si,mI

(a)
m

)]
.

(26)

The moment equations for the flux Φi (ai) on the boundary of the island i reflect the fact
that all the external sources taken together, plus the current in the island i itself, produce a
constant poloidal flux on the boundary. This is not true, in general, for each source taken
separately. However, for filamentary islands with ai → 0, R0,i(ai) → Rm,i, Z0,i(ai) →
Zm,i, ei (ai) → κm,i ∼= 1 the previous expressions are greatly simplified, eliminating the
dependency on the internal current distribution

h2
θ (ai, θi)√
g (ai, θi)

→
ai→0

ai
Rm,i

, Ki (ai) →
ai→0

ai
µ0Rm,i

, (27)

and
L

(s)
ii,0 = Li,ext →

ai→0
µ0

〈
〈G(θi; θ

′
i)〉θ′i

〉
θi
,

Mji →
ai,aj→0

µ0

〈
〈G(θi; θj)〉θj

〉
θi

M
(s)
si,m →

ai→0
M

(s,s)
si,m0 = µ0

〈
〈G(θi; θs) cosmθs〉θs

〉
θi
,

M
(a)
si,m →

ai→0
M

(a,s)
si,m0 = µ0

〈
〈G(θi; θs) sinmθs〉θs

〉
θi
.

(28)

In the symmetric shell case (as is the present one) the moment equations for the flux
function Φs (as, θs) take the symmetric form

Φs (as) δn,0 = L
(s)
ss,0nIT,s +

ns∑
m=1

L(s)
ss,mnI

(s)
m +M

(s)
is,nIT,i +M

(s)
js,nIT,j (29)

and the antisymmetric one

0 =
ns∑
m=1

L(a)
ss,mnI

(a)
m +M

(a)
is,nIT,i +M

(a)
js,nIT,j, (30)

where

L
(s)
ss,mn = µ0

〈
〈G(θs; θ

′
s) cosmθ′s〉θ′s cosnθs

〉
θs
,

M
(s)
is,n =

1

Ki (ai)

〈〈(
h2
θ (ai, θi)√
g (ai, θi)

)
G(θs; θi)

〉
θi

cosnθs

〉
θs

= M
(s)
si,n

(31)
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and
L

(a)
ss,mn = µ0

〈
〈G(θs; θ

′
s) sinmθ′s〉θ′s sinnθs

〉
θs
,

M
(a)
is,n =

1

Ki (ai)

〈〈(
h2
θ (ai, θi)√
g (ai, θi)

)
G(θs; θi)

〉
θi

sinnθs

〉
θs

= M
(a)
si,n.

(32)

The “self-inductance” coefficients of the containing shell depend only of the shell shape.
They have the following symmetry properties:

L
(s)
ss,mn = L

(s)
ss,nm , L

(a)
ss,mn = L

(a)
ss,nm. (33)

Furthermore, because the Fourier components of the surface current density are weakly
coupled, the self-linked flux is described by nearly band matrices.

The calculation of the “self-inductance” coefficients L
(s)
ss,mn and L

(a)
ss,mn requires some

attention because of the singular character of the Green’s function [19]:

G (θ; θ′) −→
θ′→θ
−hζ (θ)

{
1

2
ln

[(
hθ (θ)

8hζ (θ)

)
2 sin

(
θ − θ′

2

)]2

+ 2

}
. (34)

Introducing the dimensionless auxiliary function

g (θ; θ′) =
G (θ; θ′)

hζ (θ)
+

{
1

2
ln

[(
hθ (θ)

8hζ (θ)

)
2 sin

(
θ − θ′

2

)]2

+ 2

}
−→
θ′→θ

0, (35)

which is nonsingular but nonsymmetric (not a true Green’s function), the expressions for
the “self-inductance” coefficients become

L
(s)
mn = µ0 〈hζ (θ) 〈g (θ; θ′) cosmθ′〉θ′ cosnθ〉θ

−µ0

〈
hζ (θ)

〈{
1

2
ln

[(
hθ (θ)

8hζ (θ)

)
2 sin

(
θ − θ′

2

)]2

+ 2

}
cosmθ′

〉
θ′

cosnθ

〉
θ

,

(36)
and

L
(a)
mn = µ0 〈hζ (θ) 〈g (θ; θ′) sinmθ′〉θ′ sinnθ〉θ

−µ0

〈
hζ (θ)

〈{
1

2
ln

[(
hθ (θ)

8hζ (θ)

)
2 sin

(
θ − θ′

2

)]2

+ 2

}
sinmθ′

〉
θ′

sinnθ

〉
θ

.

(37)
Using the integrals

1

4π

2π∫
0

ln

[
2 sin

(
θ − θ′

2

)]2

cosmθ′dθ′ = −cosmθ

2m
(1− δm,0) ,

1

4π

2π∫
0

ln

[
2 sin

(
θ − θ′

2

)]2

sinmθ′dθ′ = −sinmθ

2m
(1− δm,0) ,

(38)

it follows that

L
(s)
ss,mn = µ0 〈hζ,s (θ) 〈gs (θ; θ′) cosmθ′〉θ′ cosnθ〉θ

+µ0δm,0

〈
hζ,s (θ)

[
ln

(
8hζ,s (θ)

hθ,s (θ)

)
− 2

]
cosnθ

〉
θ

+µ0

(
1− δm,0

2m

)
〈hζ,s (θ) cosmθ cosnθ〉θ ,

(39)
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and
L

(a)
ss,mn = µ0 〈hζ,s (θ) 〈gs (θ; θ′) sinmθ′〉θ′ sinnθ〉θ

+µ0

(
1− δm,0

2m

)
〈hζ,s (θ) sinmθ sinnθ〉θ .

(40)

The logarithmic term in L
(s)
ss,0n corresponds to the self-field contribution to the inductance

of the shell. Likewise, the coefficients L
(s)
ii,n and L

(a)
ii,n (or L

(s)
jj,n and L

(a)
jj,n) can be written as

L
(s)
ii,n =

1

Ki (ai)

〈(
h2
θ (ai, θ)hζ (ai, θ)√

g (ai, θ)

)(
〈gi (θ; θ′) cosnθ′〉θ′ +

cosnθ

2n
(1− δn,0)

)〉
θ

+
δn,0

Ki (ai)

〈(
h2
θ (ai, θ)hζ (ai, θ)√

g (ai, θ)

)[
ln

(
8hζ (ai, θ)

hθ (ai, θ)

)
− 2

]〉
θ

,

L
(a)
ii,n =

1

Ki (ai)

〈(
h2
θ (ai, θ)hζ (ai, θ)√

g (ai, θ)

)(
〈gi (θ; θ′) sinnθ′〉θ′ +

sinnθ

2n
(1− δn,0)

)〉
θ

.

(41)
Now, for ideal equilibrium the current distribution KT,s (θ, t = 0) in the containing shell

adjusts itself to give a constant value of the flux Φs (t = 0) on the shell. In the same
way, the shapes of the magnetic islands adjust themselves to give constant flux values
Φi (ρ = ai, t = 0) and Φj (ρ = aj, t = 0) at the plasma edges. The values of the fluxes
depend of the geometries of both islands and shell and of the total (given) values of the
toroidal currents. In other words, one has a free-boundary problem with Dirichlet condi-
tions for both islands that has to be solved simultaneously with the current distribution
induced in the shell. In general, the shape of the containing shell is determined by the
external sources, but it is assumed fixed in the present problem. In this case, the cur-
rent distribution in the shell provides Neumann conditions for the external equilibrium
problem which is solved in Section 5. Using the method of moments, the Dirichlet prob-
lem is reduced to a root finding procedure, involving a set of coupled equations which is
nonlinear in the islands parameters and linear in the shell current (Fourier) components,
namely equations 21, 22 for the islands i and j, and equations 29 and 30 for the shell s.
The internal equilibrium of each island is determined simultaneously solving equations 9,
10 and 11, which depend of the pressure and toroidal current profiles inside the islands.
In this paper these profiles take the following simple polynomial forms in ρ:

p (ρ) = p (0)

(
a2 − ρ2

a2

)2 [
1 +

(
2 +

a2p′′ (0)

2p (0)

)
ρ2

a2

]
, −6 <

a2p′′ (0)

p (0)
< 0,

IT (ρ) = IT (a)

(
1− ρ2

2a2

)
2ρ2

a2
.

(42)

For further simplicity it is assumed that p′′ (0) = −6p (0) /a2, which is the minimum
value giving peaked profiles and positive pressure in the whole radial range 0 ≤ ρ ≤ a
(p′′ (0) < 0 for non-hollow profiles). The pressure on the island magnetic axis is

p0 = p (0) =
(
103e

)
ne (0)

(
Te (0) +

Ti (0)

Zeff

)
(43)

with Te (0) and Ti (0) in keV (e is the electron charge). The following plasma parameters
are assumed for both islands: ne (0) = 0.5× 1020 m−3, Te (0) = Ti (0) = 1 keV, Zeff = 1.5.
The values of the plasma current in the islands are [17]: IT,i (0) = −3.92 MA (inner island
in the figures), IT,j (0) = 4.52 MA (outer island). The total current in the containing
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Island i Island j

R0,i (m) 2.953 R0,j (m) 3.749
ai (m) 0.263 aj (m) 0.381
ei 1.693 ej 1.255
S2,i -0.0714 S2,j 0.0582
S3,i -0.0134 S3,j -0.0166
Rm,i (m) 2.966 Rm,j (m) 3.738
κm,i 1.558 κm,j 1.215
p0,i (kPa) 13.35 p0,j (kPa) 13.35
Φi (Wb) 5.330 Φj (Wb) 14.180

Table 1: Parameters of the islands for the symmetric equilibrium shown in Fig. 1. The
values of the Fourier coefficients correspond to the edge values.

shell is IT,s (0) = IT,i (0) + IT,j (0) = 600 kA, that is, one neglects the possible current
contribution in the region between the islands and the containing shell.

The equilibrium depends of the initial conditions in the islands. Therefore, in order to
solve the equilibrium it is necessary to specify two geometrical parameters (one for each
island). In a tokamak equilibrium problem this corresponds to specifying the limiter or
X-point positions. In the present problem it is convenient to fix the initial values of the
minor radii, which set the scale of the islands, or, equivalently, the gaps between islands
and containing shell. Then, the values of the total poloidal fluxes Φs (t = 0) = Φs (0),
Φi (ρ = ai, t = 0) = Φi (0) and Φj (ρ = aj, t = 0) = Φj (0) are determined from the zeroth-
order moment equations (n = 0). The shapes of the islands and the current distribution
in the shell evolve with time from this initial equilibrium. Thus in Section 6 a small
tilting displacement is analyzed with fixed values of the total toroidal currents and fluxes
contained by the islands, corresponding to the initial equilibrium values, though other
parameters may vary completely. One must point out that the root-finding procedure
depends of good starting values. It may be necessary to start the problem with less
independent variables and gradually introduce higher-order corrections in the shape of
the islands involving triangularity, quadrangularity etc.

Table 1 gives the equilibrium parameters calculated for the symmetric configuration
shown in Fig. 1, i.e., an equilibrium that is symmetric with respect to the plane Z = 0 with
Ai,n = 0, Aj,n = 0 and I

(a)
m = 0. The surface current calculation in the containing shell is

limited to four Fourier coefficients (ns = 4) which take the following values in equilibrium:

I
(s)
1 (0) = −8.198 MA, I

(s)
2 (0) = 2.549 MA, I

(s)
3 (0) = 312.7 kA, I

(s)
4 (0) = −169.3 kA. The

surface current and the self-flux distributions in the containing shell are shown in Fig. 2.
Addition of this self-flux to the poloidal flux produced by the two islands results in a
constant flux value Φs (0) = 7.830 Wb on the shell. The poloidal flux values between the
symmetry axis and the islands contours are Φi (0) = 5.330 Wb and Φj (0) = 14.180 Wb.
The poloidal fluxes contained by the islands, that is, between the magnetic axes and
the islands contours are ΦP,i (0) = −10.010 Wb and ΦP,j (0) = 15.750 Wb. These flux
values correspond to gaps δ (ai) = (R0 (ai)− ai) − (R0,s − as) = 60 mm and δ (aj) =
(R0,s + as) − (R0 (aj) + aj) = 140 mm measured along the equatorial plane between the
boundaries of the inner and outer island, respectively, and the containing shell. The gaps
were fixed initially to set the scale of the islands.

Figures 3 and 4 show the toroidal and poloidal current densities along the equatorial
plane inside the magnetic islands. In general, the toroidal current density in the islands
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Figure 2: Surface current distribution (thick continuous line) and self-flux distribution
(thick dashed line) in the containing shell for the symmetric equilibrium shown in Fig. 1.
The thin continuous line corresponds to the total toroidal current flowing in the shell,
IT,s = 2π 〈hθ,s (θ)KT,s (θ, t)〉θ = 600 kA, and the thin dashed line to the poloidal-angle
averaged self-flux in the shell centerline, 〈Φs〉θ = −2.316 Wb.

is given by

jT (ρ, θ) =
µ0dIT/dρ

2πhζ (ρ, θ) dL/dρ
− K (ρ)

IT (ρ)

(
2πhζ (ρ, θ)− µ0dV/dρ

2πhζ (ρ, θ) dL/dρ

)
dp

dρ
, (44)

where V (ρ) is the volume enclosed by a flux surface

V (ρ) = π

2π∫
0

(
R2 (ρ, θ)

∂Z

∂θ

)
dθ,

dV

dρ
= 4π2

〈√
g (ρ, θ)

〉
θ
,

(45)

and L (ρ) is the inductance of the toroidal solenoid defined by the flux surface

L (ρ) = −µ0

2π

2π∫
0

(
Z (ρ, θ)

R (ρ, θ)

∂R

∂θ

)
dθ,

dL

dρ
= µ0

〈√
g (ρ, θ)

h2
ζ (ρ, θ)

〉
.

(46)

The poloidal current density is given in terms of the total poloidal current I (ρ) by

jP (ρ, θ) = − hθ (ρ, θ)

2π
√
g (ρ, θ)

dI

dρ
=

hθ (ρ, θ)

2π
√
g (ρ, θ)

dIP
dρ

. (47)
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Figure 3: Toroidal current density profile along the equatorial plane inside the magnetic
islands for the symmetric equilibrium shown in Fig. 1.

The total poloidal current I (ρ) = I (0)− IP (ρ) is evaluated in terms of the profiles of the
total toroidal current IT (ρ) and of the pressure p (ρ) by integration of the flux-surface
averaged equilibrium equation

dI2

dρ
= − 2

dL/dρ

(
IT (ρ)

K (ρ)

dIT
dρ

+
dV

dρ

dp

dρ

)
(48)

with the end-point condition I (a) = 2πR0B0/µ0, where B0 is the external toroidal mag-
netic field at the major radius R0 (R0 = 3.4 m and B0 = 3.7 T for JT-60U). The value
I (0) = 2πRmBm/µ0 at the origin gives the magnetic induction Bm on the magnetic axis
of each island: Ii (0) = 86.87 MA, Bm,i = 5.86 T; Ij (0) = 95.25 MA, Bm,j = 5.10 T. Hence,
both islands are in strong paramagnetic equilibrium.

5 External equilibrium magnetic field

The total poloidal flux produced just outside the containing shell by the external sources
is given by

Φ
(+)
ext (θs) = Φs (as)− µ0

∮
`
(+)
s

KT,s (θ′s)G(θs; θ
′
s) d`(θ

′
s), (49)

where Φs (as) is the constant flux on the shell and KT,s is the toroidal surface current
density flowing in the shell contour `s. In an axisymmetric system the component of the
magnetic field tangential to a flux surface (Neumann boundary condition) is calculated
in terms of the poloidal flux Φ by

Bτ = hζ

(
n̂×
−→
B
)
· ∇ζ = hζ

(−→
B ×∇ζ

)
· n̂ = − n̂ · ∇Φ

2πhζ
, (50)

where n̂ is the unit vector pointing outwards normal to the flux surface. Accordingly,
the tangential component of the magnetic field just outside the containing shell, due to
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Figure 4: Poloidal current density profile along the equatorial plane inside the magnetic
islands for the symmetric equilibrium shown in Fig. 1.

external sources, is

n̂×
−→
B

(+)
ext (θs) = hζ,s (θ)B

(+)
τ,ext (θs)∇ζ =

(
µ0

2π

∮
`
(+)
s

KT,s (θ′s) n̂ · ∇G(θs; θ
′
s) d`(θ

′
s)

)
∇ζ.

(51)

The normal component of
−→
B is continuous across a surface layer of current

−→
K = hζKT∇ζ

but the tangential component experiences a discontinuity defined by

n̂×
(−→
B (+) −

−→
B (−)

)
= µ0

−→
K. (52)

Therefore, the tangential component of the magnetic field due to external sources is given
just inside the containing shell by

B
(−)
τ,ext (θs) = −µ0KT,s (θs) +

µ0

2πhζ,s (θs)

∮
`
(+)
s

KT,s (θ′s) n̂ · ∇G(θs; θ
′
s) d`(θ

′
s). (53)

This expression corresponds to the maintaining field
−→
B (m) = hζ (θ)B

(−)
τ,ext (θ)∇ζ [20].

Integration over the shell contour yields∮
`s

B
(−)
τ,ext (θs) d`(θs) = −µ0

∮
`s

KT,s (θs) d`(θs)

+µ0

∮
`
(+)
s

KT,s (θ′s)

(∮
`s

n̂ · ∇G(θs; θ
′
s)

2πhζ,s (θs)
d`(θs)

)
d`(θ′s)

(54)

where ∮
`s

n̂ · ∇G(θs; θ
′
s)

2πhζ,s (θs)
d`(θs) =


1 inside the shell

1/2 on the shell
0 outside the shell

(55)
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Figure 5: Maintaining magnetic field for the symmetric equilibrium shown in Fig. 1. The
zero-crossing points correspond to the X-point positions on the containing shell.

in accordance with Gauss’s theorem and Ampère’s law. For integration exactly on the
shell centerline the expression of the tangential component of the external magnetic field
(maintaining field) can be written as

Bτ,ext (θs) = −µ0KT,s (θs)

2
+

µ0

2πhζ,s (θs)

∮
`s

KT,s (θ′s) n̂ · ∇G(θs; θ
′
s) d`(θ

′
s). (56)

Figure 5 shows the maintaining magnetic field for the symmetric equilibrium shown
in Fig. 1. An approximation of the maintaining field can be obtained representing the
external sources by a finite set of coils. The poloidal flux produced in the position −→r by
a circular coil with total current Ik at a fixed position −→r k is

Φk (−→r ) = µ0IkG(−→r ;−→r k). (57)

Each coil produces a magnetic field component tangential to `s given by

Bτ,k (θ) = − n̂ · ∇Φk

2πhζ (θ)
= − µ0Ik

2πhζ (θ)
n̂ · ∇G(θ;−→r k), (58)

so that the currents in the coils can be determined by a least-squares technique in order
to satisfy the approximate equation (strictly an ill-posed problem)∑

k

Ikn̂ · ∇G(θs;
−→r k) ∼= πhζ,s (θs)KT,s (θs)−

∮
`s

KT,s (θ′s) n̂ · ∇G(θs; θ
′
s) d`(θ

′
s). (59)

Hence, the total poloidal flux of the vacuum field outside the shell is given by the sum of
the flux produced by KT,s flowing on the shell centerline `s and the flux produced by the
external coils:

Φ (−→r ) = µ0

∮
`s

KT,s (θ′s)G(−→r ; θ′s) d`(θ
′
s) + µ0

∑
k

IkG(−→r ;−→r k). (60)
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The external equilibrium problem can be reduced to a small system of linear equations
without strong oscillations by taking moments of the equilibrium equation. In this way,
introducing the definitions

N
(s)
k,n = 〈n̂ · ∇G(θs;

−→r k) cosnθs〉θs ,
N

(a)
k,n = 〈n̂ · ∇G(θs;

−→r k) sinnθs〉θs
(61)

one obtains a system of symmetric and antisymmetric moment equations for the coils
currents: ∑

k

N
(s)
k,nIk = π 〈hζ,s (θs)KT,s (θs) cosnθs〉θs

−2π
〈
〈hθ,s (θ′s)KT,s (θ′s) n̂ · ∇G(θs; θ

′
s)〉θ′s cosnθs

〉
θs
,∑

k

N
(a)
k,nIk = π 〈hζ,s (θs)KT,s (θs) sinnθs〉θs

−2π
〈
〈hθ,s (θ′s)KT,s (θ′s) n̂ · ∇G(θs; θ

′
s)〉θ′s sinnθs

〉
θs
.

(62)

Defining the new coefficients

N
(s,s)
mn =

〈(
hζ,s (θs)

2hθ,s (θs)
cosmθs − 〈n̂ · ∇G(θs; θ

′
s) cosmθ′s〉θ′s

)
cosnθs

〉
θs

,

N
(s,a)
mn =

〈(
hζ,s (θs)

2hθ,s (θs)
sinmθs − 〈n̂ · ∇G(θs; θ

′
s) sinmθ′s〉θ′s

)
cosnθs

〉
θs

,

N
(a,s)
mn =

〈(
hζ,s (θs)

2hθ,s (θs)
cosmθs − 〈n̂ · ∇G(θs; θ

′
s) cosmθ′s〉θ′s

)
sinnθs

〉
θs

,

N
(a,a)
mn =

〈(
hζ,s (θs)

2hθ,s (θs)
sinmθs − 〈n̂ · ∇G(θs; θ

′
s) sinmθ′s〉θ′s

)
sinnθs

〉
θs

,

(63)

the system of equations (Neumann boundary conditions) that relate the currents in the
equilibrium coils with the Fourier components of the toroidal surface current density in
the shell becomes∑

k

N
(s)
k,nIk = N

(s,s)
0n IT,s +

ns∑
m=1

(
N (s,s)
mn I(s)

m +N (s,a)
mn I(a)

m

)
,

∑
k

N
(a)
k,nIk = N

(a,s)
0n IT,s +

ns∑
m=1

(
N (a,s)
mn I(s)

m +N (a,a)
mn I(a)

m

)
.

(64)

It is possible to satisfy as many moment equations as the number of pairs of symmetric
coils minus two, that is, for n = 0, 1, 2, . . . k − 2, or to solve the equations using a least-
squares fitting procedure. A single pair of symmetric coils (k = 2) connected in series
corresponds to a simple “vertical” equilibrium field.

Again it is necessary to take into account the singularity of the Green’s function in
numerical calculations. In general, the normal component of ∇G is given by

n̂·∇G (θ; θ′) =
sign [(∂R/∂θ) ∂2Z/∂θ2 − (∂Z/∂θ) ∂2R/∂θ2]√

(∂R/∂θ)2 + (∂Z/∂θ)2

(
−∂Z
∂θ

∂G

∂R
+
∂R

∂θ

∂G

∂Z

)
, (65)
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where

∂G (R,Z;R′, Z ′)

∂R
=

√
m

2

{
K (m)−

[
1−

(
1 +

R′

R

)
m

2

]
E (m)

1−m

}√
R

R′
,

∂G (R,Z;R′, Z ′)

∂Z
=

√
m

2

[
K (m)−

(
1− m

2

) E (m)

1−m

]
Z − Z ′√
RR′

.

m =
4RR′

(R +R′)2 + (Z − Z ′)2 (0 6 m 6 1)

(66)

The “self-field” limit value of n̂ · ∇G is

lim
θ′→θ

[n̂ · ∇G (θ; θ′)] =

√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
×

{
1

2
ln

[(
hθ (θ)

8hζ (θ)

)
2 sin

(
θ − θ′

2

)]2

+ 1

+
hζ (θ) /hθ (θ)

h2
θ (θ)− (∂hζ/∂θ)

2

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)}
.

(67)

Therefore, the singularity of the normal component of the Green’s function gradient can
be handled introducing the dimensionless auxiliary function

n (θ; θ′) = n̂ · ∇G (θ; θ′)− lim
θ′→θ

[n̂ · ∇G (θ; θ′)] →
θ′→θ

0. (68)

It follows that the coefficients N
(s,s)
mn , N

(s,a)
mn , N

(a,s)
mn and N

(a,a)
mn can be written with the

singularities analytically removed, in a form suitable for numerical calculation:

N
(s,s)
mn =〈(
hζ (θ)

2hθ (θ)
cosmθ − 〈n (θ; θ′) cosmθ′〉θ′

)
cosnθ

〉
θ

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
×

[
ln

(
8hζ (θ)

hθ (θ)

)
− 1− hζ (θ) /hθ (θ)

h2
θ (θ)− (∂hζ/∂θ)

2

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)]
cosnθ

〉
θ

δm,0

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
cosmθ cosnθ

〉
θ

1− δm,0
2m

,

(69)

N
(s,a)
mn =〈(
hζ (θ)

2hθ (θ)
sinmθ − 〈n (θ; θ′) sinmθ′〉θ′

)
cosnθ

〉
θ

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
sinmθ cosnθ

〉
θ

1− δm,0
2m

,

(70)
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Figure 6: Distribution of currents in the set of external equilibrium coils shown in Fig. 1.

N
(a,s)
mn =〈(
hζ (θ)

2hθ (θ)
cosmθ − 〈n (θ; θ′) cosmθ′〉θ′

)
sinnθ

〉
θ

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
×

[
ln

(
8hζ (θ)

hθ (θ)

)
− 1− hζ (θ) /hθ (θ)

h2
θ (θ)− (∂hζ/∂θ)

2

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)]
sinnθ

〉
θ

δm,0

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
cosmθ sinnθ

〉
θ

1− δm,0
2m

,

(71)

N
(a,a)
mn =〈(
hζ (θ)

2hθ (θ)
sinmθ − 〈n (θ; θ′) sinmθ′〉θ′

)
sinnθ

〉
θ

+

〈√
h2
θ (θ)− (∂hζ/∂θ)

2

2hθ (θ)
sign

(
∂hθ
∂θ

∂hζ
∂θ
− hθ (θ)

∂2hζ
∂θ2

)
sinmθ sinnθ

〉
θ

1− δm,0
2m

.

(72)

Figure 6 shows the distribution of currents in the external coils necessary to establish
the equilibrium shown in Fig. 1, also providing the flux to drive the toroidal current IT,s
in the containing shell. This set of coils gives an excellent fit to the total poloidal flux
distribution on the containing shell, but about twice the number of coils is needed if the
same fit quality is required with respect to the maintaining magnetic field.

Collecting all previous results in a graphical form, Figs. 7, 8 and 9 show the total
poloidal flux with respect to the symmetry axis in perspective view, in front view and in
top orthographic projection, respectively, for the symmetric equilibrium shown in Fig. 1.
The sharp change in the gradient of the poloidal flux corresponds to the containing shell
contour. If the toroidal surface current density KT,s is distributed over an annulus repre-
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Figure 7: Perspective view of the total poloidal flux with respect to the symmetry axis
for the equilibrium shown in Fig. 1.

20



Figure 8: Front view of the total poloidal flux for the equilibrium shown in Figs. 1
and 7. The horizontal planes correspond, from top to bottom, to the constant flux values
Φj (0) = 14.180 Wb, Φs (0) = 7.830 Wb and Φi (0) = 5.330 Wb.

Figure 9: Top orthographic projection of the total poloidal flux for the equilibrium shown
in Figs. 1, 7 and 8.
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senting the outer plasma region this change becomes gradual. Of course, the containing
contour can be considered as a virtual shell for the maintaining field, instead of a true
current carrying shell, but only if the total toroidal shell current IT,s vanishes.

6 Magnetohydrodynamic stability analysis

The role of reconnection in the formation of current holes has been studied before by means
of resistive magnetohydrodynamic (MHD) simulations in toroidal geometry [21]. It was
argued that reconnection events redistribute the current in the plasma core holding the
current density near zero, preventing strong reversal and islands formation in the center
of the discharge. However, no indication of the required MHD instabilities have been
observed in the experiments [8]. Furthermore, as briefly discussed in the Introduction,
the AC experiments clearly show that current reversal is possible so that the current
reversal issue as a whole remains unresolved. In this section it is assumed that the
strong current reversal equilibrium with two islands studied in the previous sections as
been established. Then, a preliminary MHD stability analysis of the reversed current
configuration is conducted by means of the energy principle.

The energy stored in the islands equilibrium is formed by the poloidal and toroidal
magnetic field energies in the shell and islands circuits, plus the energy due to quasistatic
work of the islands. The poloidal magnetic field energy has contributions from the self-
energies, WP,ii, WP,jj, WP,ss, and the mutual energies, WP,ij, WP,is, WP,js of the islands
and shell circuits. The toroidal magnetic field energy includes the energies stored in the
islands, WT,i + WT,0,i and WT,j + WT,0,j, due to both the intrinsic and external toroidal
magnetic fields. Finally, the energies due to quasistatic work done by the islands is denoted
by WQS,i and WQS,j. All these contributions are evaluated in the following.

The poloidal self magnetic field energy of the island i is

WP,ii (ai) =
1

2
(Li,ext (ai) + Li,int (ai)) I

2
T,i (ai) , (73)

where

Li,ext (ai) = L
(s)
ii,0 =

1

Ki (ai)

〈〈(
h2
θ (ai, θ

′
i)√

g (ai, θ′i)

)
G(θi; θ

′
i)

〉
θ′i

〉
θi

,

Li,int (ai) =
1

I2
T,i (ai)

ai∫
0

I2
T,i (ρ)

Ki (ρ)
dρ,

(74)

denote the external and internal inductances of the island.
The poloidal self magnetic field energy of the shell s is

WP,ss =
µ0

2

∮
`s

∮
`′s

KT,s (θs)KT,s (θ′s)G (θs; θ
′
s) d`(θ

′
s)d`(θs)

=
1

2
L

(s)
ss,00I

2
T,s + IT,s

ns∑
m=1

L
(s)
ss,m0I

(s)
m

+
1

2

ns∑
m=1

L(s)
ss,mm

(
I(s)
m

)2
+ 2

ns∑
m=2

m−1∑
n=1

L(s)
ss,mnI

(s)
m I(s)

n

+
1

2

ns∑
m=1

L(a)
ss,mm

(
I(a)
m

)2
+ 2

ns∑
m=2

m−1∑
n=1

L(a)
ss,mnI

(a)
m I(a)

n .

(75)
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The poloidal mutual magnetic field energy between islands i and j is

WP,ij (ai, aj) = µ0

∮
`j

∮
`i

KT,j (aj, θj)KT,i (ai, θi)G (θj; θi) d`(θi)d`(θj)

= MijIT,i (ai) IT,j (aj) = MjiIT,i (ai) IT,j (aj) .
(76)

The poloidal mutual magnetic field energy between the island i and the shell s is

WP,is (ai) = µ0

∮
`s

∮
`i

KT,s (θs)KT,i (ai, θi)G (θs; θi) d`(θi)d`(θs)

=

(
M

(s)
si,0IT,s +

ns∑
m=1

(
M

(s)
si,mI

(s)
m +M

(a)
si,mI

(a)
m

))
IT,i (ai)

=

(
M

(s)
is,0IT,s +

ns∑
m=1

(
M

(s)
is,mI

(s)
m +M

(a)
is,mI

(a)
m

))
IT,i (ai)

= MsiIT,sIT,i (ai) = MisIT,sIT,i (ai) .

(77)

The total toroidal magnetic field energy stored in the island i is

WT,i (ai) +WT,0,i (ai) =

ai∫
0

Li (ρ)

dLi/dρ

(
IT,i (ρ)

Ki (ρ)

dIT,i
dρ

+
dVi
dρ

dpi
dρ

)
dρ+WT,0,i (ai) , (78)

where the second term refers to the magnetic energy due to the external toroidal magnetic
field inside the empty island cavity, which does not vary in a fixed boundary situation

WT,0,i (ai) =
1

2
Li (ai) I

2
i (ai) =

1

2
Li (ai)

(
2πR0B0

µ0

)2

. (79)

In the same way, the toroidal magnetic field energy due to B0 and stored in the empty
containing shell is given by (note that there is no poloidal current flowing in the shell)

WT,0,s =
1

2
Ls (as) I

2
s (as) =

1

2
Ls (as)

(
2πR0B0

µ0

)2

, (80)

where

Ls (as) = −µ0

2π

2π∫
0

(
Zs(θ)

Rs(θ)

∂Rs

∂θ

)
dθ. (81)

Finally, the stored energy due to the quasistatic (reversible) mechanical work done by
expansion of the island i is

WQS,i (ai) =

ai∫
0

pi (ρ)
dVi
dρ

dρ. (82)

The total energy stored in the islands-shell system, excluding the interaction of the
shell with the external coils and the toroidal magnetic field energy stored in the empty
containing shell, is given by the sum

Wtotal = WP,ii+WP,jj +WP,ss+WP,ij +WP,is+WP,js+WT,i+WT,j +WQS,i+WQS,j. (83)
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Now, the equilibrium is perturbed by a small rotation ω around the shell center, such
that the major vertical positions of the islands become

Z0,i(ai) = (R0,i(ai)−R0,s) tanω,
Z0,j(ai) = (R0,j(aj)−R0,s) tanω.

(84)

During this tilting motion the total toroidal currents IT,i (0) = −3.92 MA, IT,j (0) =
4.52 MA flowing in the islands, as well as the total poloidal fluxes ΦP,i (0) = −10.010 Wb,
ΦP,j (0) = 15.750 Wb contained by the islands, are assumed constant. It is also assumed
that the thermodynamic pressure in the islands varies according to the quasistatic adia-
batic equation of state:

p (0)V (a)γ = constant γ = 5/3. (85)

The remaining equilibrium parameters are calculated by the method of matching moments
described in Section 4. The results of these calculations are listed in Tables 2 and 3 for
island i, Tables 4 and 5 for island j, and Tables 6 and 7 for the containing shell s. The
symmetric equilibrium values which correspond to ω = 0◦ are listed in Table 1. These
results show the occurrence of a critical point at a maximum rotation angle ω ∼= 3.9◦,
resulting in a bifurcation of the equilibrium for 0 6 ω . 3.9◦. The low-energy equilibrium
branch corresponds to the direct tilt (forward motion) extending from the symmetric
equilibrium solution (ω = 0) up to the critical point. Tables 2 and 4 indicate that
both islands are compressed during the direct tilt. Actually, the inner island suffers a
mild compression with a maximum pressure p0,i = 13.97 Pa occurring near the critical
point (more precisely for ω ∼= 3.8◦) and a slow expansion afterwards. The high-energy
equilibrium branch corresponding to the reverse tilt (backward motion) is characterized
by an expansion of the inner island and a strong compression of the outer one, which
collapses into a nonsymmetric filament with relatively high plasma pressure. Figures 10
and 11 illustrate the change of the islands shape during the direct and reverse tilting
displacements, respectively. Of course, a specular set of equilibria with respect to the
equatorial plane Z = 0 is obtained changing the sign of both ω and the antisymmetric
coefficients in the spectral representation of the islands.

Figures 12 to 18 show the changes in the energy terms of the islands-shell system during
the direct and reverse tilting displacements, along both equilibrium branches. Initially,
Fig. 12 shows the poloidal self magnetic field energies WP,ii and WP,jj stored in the
islands: WP,ii varies to a small extent around 75 MJ, with constant total toroidal current
IT,i and small changes in the geometry; in the same way the energy WP,jj presents a
relatively small variation in the direct tilt branch but varies considerably in the reverse
tilt, due to the large increase in the inductance of the outer island during the compression
process, although keeping constant total toroidal current IT,j. The dashed lines in Fig. 12
correspond to the large-aspect-ratio approximation

WP,self (a) ∼=
µ0Rm

2

[
ln

(
8Rm

a

)
− 2 +

`i
2

]
I2
T (a) . (86)

Here `i is the internal inductance defined by

`i =
2

µ0Rm

1

I2
T (a)

a∫
0

I2
T (ρ)

K (ρ)
dρ ∼=

2κm
κ2
m + 1

ln

[
exp

(
1

2

)
+

exp (γE)

2
αj

]
, (87)
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Island i ω = 1◦ ω = 2◦ ω = 3◦ ω = 3.3◦ ω = 3.6◦ ω = 3.9◦

R0,i (m) 2.954 2.954 2.955 2.956 2.957 2.958
Z0,i (mm) -8.67 -17.3 -25.9 -28.5 -31.0 -33.5
ai (m) 0.263 0.263 0.262 0.262 0.261 0.261
ei 1.693 1.693 1.692 1.691 1.690 1.689
S2,i -0.0715 -0.0717 -0.0718 -0.0717 -0.0719 -0.0731
A2,i -0.0223 -0.0445 -0.0664 -0.0728 -0.0791 -0.0846
S3,i -0.0135 -0.0137 -0.0141 -0.0143 -0.0146 -0.0155
A3,i -0.000668 -0.00140 -0.00226 -0.00257 -0.00293 -0.00354
Rm,i (m) 2.966 2.967 2.968 2.969 2.970 2.971
Zm,i (mm) -6.69 -13.2 -19.2 -20.9 -22.6 -24.3
κm,i 1.554 1.543 1.526 1.519 1.513 1.507
p0,i (kPa) 13.38 13.48 13.72 13.82 13.93 13.92
Φi (Wb) 5.322 5.292 5.223 5.191 5.152 5.111

Table 2: Parameters of the inner island i for a small direct tilt around the containing shell
center (low-energy equilibrium branch).

Island i ω = 3.9◦ ω = 3.6◦ ω = 3.3◦ ω = 3◦ ω = 2◦ ω = 1◦

R0,i (m) 2.960 2.962 2.963 2.965 2.970 2.980
Z0,i (mm) -33.4 -30.7 -28.1 -25.4 -16.8 -8.21
ai (m) 0.262 0.265 0.267 0.269 0.276 0.286
ei 1.691 1.696 1.699 1.701 1.706 1.710
S2,i -0.0754 -0.0803 -0.0836 -0.0865 -0.0958 -0.110
A2,i -0.0833 -0.0749 -0.0674 -0.0603 -0.0382 -0.0178
S3,i -0.0167 -0.0189 -0.0203 -0.0214 -0.0251 -0.0305
A3,i -0.00393 -0.00423 -0.00421 -0.00409 -0.00325 -0.00203
Rm,i (m) 2.973 2.976 2.978 2.980 2.987 2.999
Zm,i (mm) -24.5 -23.0 -21.3 -19.6 -13.3 -6.61
κm,i 1.511 1.523 1.532 1.540 1.558 1.566
p0,i (kPa) 13.67 13.03 12.57 12.17 10.95 9.441
Φi (Wb) 5.121 5.183 5.232 5.275 5.403 5.571

Table 3: Parameters of the inner island i for a small reverse tilt around the containing
shell center (high-energy equilibrium branch).
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Island j ω = 1◦ ω = 2◦ ω = 3◦ ω = 3.3◦ ω = 3.6◦ ω = 3.9◦

R0,j (m) 3.749 3.749 3.749 3.749 3.750 3.751
Z0,j (mm) 5.21 10.4 15.7 17.3 18.8 20.5
aj (m) 0.379 0.373 0.360 0.353 0.343 0.320
ej 1.252 1.245 1.230 1.222 1.210 1.184
S2,j 0.0570 0.0531 0.0457 0.0423 0.0377 0.0288
A2,j 0.0127 0.0258 0.0402 0.0452 0.0511 0.0602
S3,j -0.0161 -0.0145 -0.0116 -0.0103 -0.00872 -0.00591
A3,j -0.00519 -0.0100 -0.0142 -0.0152 -0.0161 -0.0167
Rm,j (m) 3.738 3.739 3.741 3.742 3.744 3.747
Zm,j (mm) 1.22 2.37 3.32 3.51 3.60 3.30
κm,j 1.212 1.205 1.190 1.183 1.172 1.149
p0,j (kPa) 13.63 14.62 17.02 18.42 20.72 27.22
Φj (Wb) 14.300 14.690 15.560 16.010 16.700 18.320

Table 4: Parameters of the outer island j for a small direct tilt around the containing
shell center (low-energy equilibrium branch).

Island j ω = 3.9◦ ω = 3.6◦ ω = 3.3◦ ω = 3◦ ω = 2◦ ω = 1◦

R0,j (m) 3.752 3.756 3.759 3.762 3.772 3.788
Z0,j (mm) 20.61 19.25 17.81 16.34 11.25 5.90
aj (m) 0.299 0.264 0.241 0.221 0.155 0.0826
ej 1.160 1.124 1.103 1.085 1.041 1.012
S2,j 0.0221 0.0140 0.0101 0.00745 0.00231 0.000338
A2,j 0.0657 0.0713 0.0736 0.0751 0.0782 0.0833
S3,j -0.00403 -0.00206 -0.00127 -0.000792 -0.000101 0.0000154
A3,j -0.0165 -0.0158 -0.0153 -0.0149 -0.0142 -0.0118
Rm,j (m) 3.750 3.755 3.759 3.762 3.773 3.788
Zm,j (mm) 2.72 1.62 0.96 0.44 -0.62 -0.94
κm,j 1.129 1.100 1.083 1.069 1.033 1.010
p0,j (kPa) 35.62 56.87 79.45 109.7 385.0 3.256×103

Φj (Wb) 19.940 22.800 24.860 26.870 34.750 48.300

Table 5: Parameters of the outer island j for a small reverse tilt around the containing
shell center (high-energy equilibrium branch).
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Shell s ω = 1◦ ω = 2◦ ω = 3◦ ω = 3.3◦ ω = 3.6◦ ω = 3.9◦

I
(s)
1 (MA) -8.203 -8.217 -8.249 -8.264 -8.287 -8.331

I
(s)
2 (MA) 2.533 2.483 2.389 2.347 2.287 2.161

I
(s)
3 (kA) 315.7 321.5 321.0 316.9 308.9 290.8

I
(s)
4 (kA) -166.5 -157.4 -139.4 -131.8 -123.0 -113.5

I
(a)
1 (kA) 39.44 75.16 102.0 106.9 109.0 103.2

I
(a)
2 (kA) -9.440 -18.77 -26.62 -28.07 -28.47 -24.94

I
(a)
3 (kA) -40.18 -76.59 -105.0 -110.9 -114.7 -113.7

I
(a)
4 (kA) 12.12 26.39 45.54 53.41 63.61 82.69

Table 6: Fourier components of the surface current density in the containing shell s for
a small direct tilt of the islands around the shell center (low-energy equilibrium branch).
The total poloidal flux on the shell remains constant at a value Φs = 7.830 Wb defined
by the fixed shape and constant total current IT,s = 600 kA.

Shell s ω = 3.9◦ ω = 3.6◦ ω = 3.3◦ ω = 3◦ ω = 2◦ ω = 1◦

I
(s)
1 (MA) -8.367 -8.415 -8.443 -8.466 -8.528 -8.575

I
(s)
2 (MA) 2.047 1.873 1.766 1.674 1.385 0.9593

I
(s)
3 (kA) 278.8 270.1 270.2 273.8 307.4 392.0

I
(s)
4 (kA) -114.7 -127.3 -138.1 -148.1 -176.9 -201.1

I
(a)
1 (kA) 92.66 74.09 62.99 54.21 33.29 19.80

I
(a)
2 (kA) -19.07 -8.760 -2.786 1.664 10.01 11.93

I
(a)
3 (kA) -107.8 -95.17 -86.10 -77.82 -51.89 -26.52

I
(a)
4 (kA) 96.26 108.7 110.7 108.9 87.94 51.19

Table 7: Fourier components of the surface current density in the containing shell s for a
small reverse tilt of the islands around the shell center (high-energy equilibrium branch).
The total poloidal flux on the shell remains constant at a value Φs = 7.830 Wb defined
by the fixed shape and constant total current IT,s = 600 kA.

27



Figure 10: Sequence of islands equilibria for a direct tilt: (a) ω = 1◦; (b) ω = 2◦;
(c) ω = 3◦; (d) ω = 3.9◦. This sequence corresponds to the low-energy equilibrium branch
shown in Fig. 18.

Figure 11: Sequence of islands equilibria for a reverse tilt: (a) ω = 3.9◦; (b) ω = 3◦;
(c) ω = 2◦; (d) ω = 1◦. This sequence corresponds to the high-energy equilibrium branch
shown in Fig. 18.
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where γE ∼= 0.577 is the Euler’s constant and αj is the exponent in the binomial approx-
imation of the flux-surface averaged toroidal current density

jT (ρ) ∼=
1 + αj
πa2κm

(
1− ρ2

a2

)αj

IT (a) with IT (ρ) ∼=

[
1−

(
1− ρ2

a2

)1+αj
]
IT (a) . (88)

The total toroidal current profile used in this work can be fitted with αj ∼= 0.957. Of
course, the large-aspect-ratio approximation becomes very good in the final stages of
compression of the outer island. Now, the poloidal self magnetic field energy WP,ss changes
as shown in Fig. 13, due to a redistribution of the surface current density induced mostly
by the collapsing external island. Figure 14 shows the change in the poloidal magnetic
field energy WP,ij associated with the interaction between islands; the increasing negative
magnetic energy corresponds to the repulsive force between the islands that are contained
by the surface current induced in the shell. The dashed line corresponds to the interaction
energy between two filaments

WP,ij
∼= µ0

√
Rm,iRm,j

(
(2−mij)K (mij)− 2E (mij)√

mij

)
IT,iIT,j (89)

where K (mij) and E (mij) are the complete elliptic integrals and

mij =
4Rm,iRm,j

(Rm,i +Rm,j)
2 + (Zm,i − Zm,j)2 . (90)

This formula gives a reasonable approximation of the mutual inductance effects. The
changes in the poloidal mutual magnetic field energy terms WP,is and WP,js, due to the
repulsive interaction between the islands and the shell, are shown in Fig. 15. Next, as
shown in Fig. 16, the intrinsic toroidal magnetic field energies WT,i and WT,j stored in
the islands do not change significantly; in the final stages of the strong compression phase
WT,j presents a small reduction due to the diamagnetic effect. Finally, Fig. 17 shows
the changes in the quasistatic energy terms WQS,i and WQS,j: WQS,i changes slightly
around 21 kJ; WQS,j increases significantly to the 1 MJ level during the compression pro-
cess though contributing very little to the total stored energy.

Figure 18 shows the total energy Wtotal given by the sum of the energy contributions
displayed in the previous figures. The quasistatic energy terms WQS,i and WQS,j have
a negligible contribution. It turns out that the energy terms WP,ss, WP,is, WP,js, WT,i

and WT,j are not negligible, but in large part cancel out. Hence, Fig. 18 compares the
total energy with the sum of the remaining contributions WP,ii, WP,jj and WP,ij. Also,
the dashed line in Fig. 18 gives the combined sum of the large-aspect-ratio and filaments
approximations given above. The coupling coefficient between the two islands varies from
0.59 (ω = 0◦) to 0.56 (ω = 3.9◦) along the low-energy branch, and down to 0.44 (ω = 0.4◦)
and lower values along the high-energy branch. Since WP,ii is practically constant, the
changes in the total stored energy are dominated by the interplay between WP,ij and
WP,jj. The force Fij,ω = −dWij/dω exerted in the direction of the displacement ω acts
in such a way as to compress the outer island. However, this force is counteracted by
Fjj,ω = −dWjj/dω, which acts to expand the outer island in both equilibrium branches. As
a result, Fig. 18 shows that the symmetric equilibrium at ω = 0◦ is stable under a tilting
displacement for the assumed initial conditions. A non-symmetric filament produced in
the unstable high-energy branch proceeds to the stable position at ω = 0◦ (of course, the
strongly compressed island may be subject to other MHD instabilities). The fold in the
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Figure 12: Poloidal self magnetic energies stored in the islands. The dashed lines corre-
spond to the large-aspect-ratio approximation given in the text.

Figure 13: Poloidal self magnetic energy stored in the shell.
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Figure 14: Poloidal magnetic field energy due to the mutual interaction between islands.
The dashed line corresponds to the filaments approximation given in the text.

Figure 15: Poloidal magnetic field energies due to mutual interaction between the islands
and the shell.
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Figure 16: Toroidal magnetic field energies stored in the islands.

Figure 17: Quasistatic energies stored in the islands. Note the change of scale between
the two islands.
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Figure 18: Total energy stored in the islands-shell system and dominant energy terms con-
tributions. The dashed line corresponds to the combined large-aspect-ratio and filaments
approximations given in the text.

equilibrium at the critical point ω ∼= 3.9◦ allows a continuous transition between the two
equilibrium branches.

The energy terms associated with the external equilibrium are not included in the above
analysis. In general, the energy balance of the entire system may be written in the form

dWELECTRICAL
INPUT

= dWLOSS + dWSTORED + dWMECHANICAL
OUTPUT

. (91)

Since losses are neglected and there is no mechanical energy exchange with the exterior of
the system, any change in the stored energy, which corresponds to the change in the total
energy defined previously, is compensated by electrical energy feed by or into the external
coils. In this paper it is assumed that the external coils system constitutes an infinite
source or sink of electrical energy. The situation may differ in an externally controlled
system as well as in the presence of heat losses (for example, in the outer tokamak plasma
region/shell).

7 Discussion

In summary, the method presented makes it possible to investigate in a relatively simple
way the equilibrium of complex configurations of non-nested flux surfaces. The method
was applied to study the equilibrium of a pair of nonsymmetric islands contained by an
ideal shell, which models the core of a tokamak with strong toroidal current reversal.
Both the containing shell and the islands flux surfaces were described using spectral rep-
resentations with distinct poloidal angles for either the shell or each simply connected
region. With a reduced set of Fourier coefficients the internal equilibrium of each island
can be solved effectively by the variational moments method. For simplicity, a Taylor
series expansion of the variational moments solution to fourth-order in the radial coordi-
nate has been used in this work. This series solution is adequate for the large-aspect-ratio

33



configuration of the islands, although the spectral representations are not limited in the
aspect ratio. Furthermore, the method uses the equivalent surface current density descrip-
tion in the internal (non-vacuum) flux-surfaces. This gives a straightforward formulation
to the interaction between the different regions in terms of line integrals on the bound-
aries. Then, the equilibrium of the islands-shell system can be determined by matching
moments of the Dirichlet boundary conditions. It is possible to satisfy as many moment
equations as the number of unknown spectral coefficients on the islands boundaries. Also,
the Dirichlet condition determines the surface current density distribution on the contain-
ing shell. At last, the currents in the external coils system were determined applying the
Neumann boundary condition on the containing shell.

The proposed method, using spectral representations and equivalent surface current den-
sities, leads naturally to a circuit-like approach to the equilibrium problem. The analytic
expressions made available by the spectral representations simplify the computation of
the stored energy terms, providing a tool for the analysis of the MHD stability by means
of the energy principle. In this way it has been shown, for a class of tilting displacements,
that the pair of symmetric islands in strong toroidal current reversal conditions in a toka-
mak core are stable. Moreover, the analysis has shown the occurrence, possibly for the
first time, of a clear bifurcation in the MHD equilibrium. A very interesting result is the
existence of two specular, nonsymmetric filamentary equilibrium solutions, separated by
a branch cut, that may evolve into a large symmetric island through a tilting motion.

The present work concentrated on strong toroidal current reversal configurations, appro-
priate to AC tokamaks. In a future development both the dynamics of the AC regime and
the small-islands weak-reversal configurations expected in the current-hole regime will be
examined. However, firstly it may be necessary to obtain a spectral representation for
flux surfaces in an annular region, improving the model of the outer plasma region.
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