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ABSTRACT: Several studies have been devoted to dynamic and statistical downscaling for 

both climate variability and climate change. This paper introduces an application of temporal 

neural networks for downscaling global climate model output and autocorrelation functions. 

This method is proposed for downscaling daily precipitation time series for a region in the 

Amazon Basin. The downscaling models were developed and validated using IPCC AR4 model 

output and observed daily precipitation. In this paper five AOGCMs for the twentieth century 

(20C3M) (1970-1999) and three SRES scenarios (A2, A1B, and B1) were used. The 

performance in downscaling of the temporal neural network was compared to that of an 

autocorrelation statistical downscaling model with emphasis on its ability to reproduce the 

observed climate variability and tendency for the period 1970-1999. The model test results 

indicate that the neural network model significantly outperforms the statistical models for the 

downscaling of daily precipitation variability.  

 
1. INTRODUCTION 
Numerical models (general circulation models, or GCMs) representing physical processes in the 

atmosphere, ocean, cryosphere and land surface, are the most advanced numerical tools 

currently available for weather and climate forecasts, and for simulating the response of the 

global climate system to increasing greenhouse gas concentrations.  A complete review of 

GCMs used in climate variability and change can be found in Meehl et al. (2007). 

There are various downscaling techniques available to convert GCM outputs into daily 

meteorological variables appropriate for studies of hydrological impact and climate change 

variability (e.g. Dibike and Coulibaly, 2006). Widmann et al., (2003) developed a method to 

downscale precipitation, referred to as “local rescaling”.  

There are several different methods that can be used to derive the relationship between local and 

large-scale climates. There is statistical downscaling used for spatial downscaling; but mostly 

multiple linear regression, principle component analysis, and artificial neural networks are used.  

However, the procedure selected mainly depends on the objective of the study and its 

applications (Solman and Nuñez, 1999). Dynamical downscaling generates regional-scale 

information by developing and using regional climate models (RCMs) with the coarse GCM 

data used as boundary conditions. The RCMs represent an effective method of adding fine-scale 

detail to simulated patterns of climate variability and change, as they resolve better the local 

land-surface properties such as orography, coasts and vegetation and the internal regional 

climate variability through their better resolution of atmospheric dynamics and processes 

(Giorgi et al., 2004).   

Artificial Neural Networks (ANNs) denote a set of connectionist models inspired by the 

behavior of the human brain. In particular, the Multilayer Perceptron (MLP) is the most popular 

ANN architecture, where neurons are grouped in layers and only forward connections exist. 

This provides a powerful base learner, with advantages such as nonlinear mapping and noise 

tolerance, increasingly used in the Data Mining (DM) and Machine Learning (ML) fields due to 

its good behavior in terms of predictive knowledge (e.g. Rumelhart et al., 1995). The simplest 



form of ANN (e.g. Multilayer Perceptron) is reported to give results similar to those from 

multiple regression downscaling methods.  

The objective of this study is to identify temporal empirical functions, using artificial neural 

networks (ANNs) and autocorrelation functions (ACs) that can capture the complex relationship 

between selected large-scale predictors and locally-observed meteorological variables for a 

given temporal scale (predictands). 

 

2. METHOD 
a. Artificial Neural Network 

An ANN is a system based on the operation of a biological neural network, in other words, it is 

an emulation of biological neural system. 

Advantages of the artificial neural network:  

1) An ANN can perform tasks that a linear program cannot; 

2) When an element of the ANN fails, it can continue without any problem, due to its 

parallel nature; 

3) An ANN learns and does not have to be reprogrammed; 

4) It can be implemented in any application; 

Disadvantage of an ANN: 

1) Large amounts of observational data may be required to establish statistical 

relationships for the current climate; 

2) Specialized knowledge is required to apply the techniques correctly; 

3) Relationships are only valid within the range of the data used for calibration; projection 

for some variables may lie outside this range; 

4) It might not be possible to derive significant relationships for some variables.  

ANN is among the newest signal-processing technologies in the engineer’s toolbox. The field is 

highly interdisciplinary, but our approach will be restricted to the engineering perspective. 

Definitions and style of computation in an ANN are of an adaptive nature and often nonlinear 

systems learn to perform a function from data (input/output). 

An input is presented to the ANN along with a corresponding desired, or target, response set for 

the output (when this is the case, the training is called supervised). An error field is constructed 

from the difference between the desired response and the system output. The error information 

is used as feedback to the system and adjusts the system parameters in a systematic fashion. The 

process is repeated until the performance is acceptable. It is clear from this description that the 

performance hinges heavily on the data. 

The network diagram shown (Figure 1) is a full-connected two-layer, feed-forward, perceptron 

ANN. Full-connected means that the output from each input and hidden neuron is distributed to 

all of the neurons in the following layer. Feed-forward means that the values only move from 

the input layer to hidden layers and, then to the output layer, with no values fed back to earlier 

layers.       

The goal of the training process is to find the set of weight values that will cause the output 

from the ANN to match the actual target values as closely as possible. There are several issues 

involved in designing and training a multilayer perceptron network: 

1) Selecting how many hidden layer to use in the network; 

2) Deciding how many neurons to use on each hidden layer; 

3) Finding a globally optimal solution that avoids local minima; 

4) Converging to on optimal solution in a reasonable period of time; 

5) Validating the neural network to test for overfitting. 



 
Figure 1 - Structure of the artificial neural network. 

 

b. The statistical modeling (Autocorrelation) 

Autocorrelation is the expected value of the product of a random variable or signal realization 

with a time-shifted version of itself obtained from a simple calculation and analysis of the 

autocorrelation function. We can discover a few important characteristics about our random 

process: These include: 

1) How quickly our random signal or processes changes with respect to the time function; 

2) Whether our process has a periodic component and what the expected frequency might 

be. 

Since the autocorrelation functions are simply the expected value of a product, let us assume 

that we have a pair of random variables from the same process, 
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The above equation is valid for stationary and non-stationary random processes. For stationary 

process, we can generalize this expression a little further. Given a wide-sense stationary process, 

it can be proven that the expected values from our random process will be independent of the 

origin of our time function. Therefore, we can say that our autocorrelation function will depend 

on the time difference and not some absolute time. For this discussion, we will tt 12
−=τ  , and 

thus we generalize our autocorrelation expression as  
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for the continuous-time case. 

Below we will look at several properties of the autocorrelation function that hold for a 

stationary random process. 

Autocorrelation is an even function forτ ; 
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The mean-square value can be found by evaluating the autocorrelation where 0=τ , which 

gives us; 
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The autocorrelation function will have its largest value when 0=τ . This value can appear again 

- for example in a periodic function at the values of the equivalent periodic points - but will 

never be exceeded: 
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If we take the autocorrelation of a periodic function, then ( )τRXX
 will also be periodic with the 

same frequency. 

 

3. PROCEDURE FOR TRAINING THE NETWORK 
Training of the ANN is accomplished by providing inputs to the model, computing the 

output, and adjusting the interconnection weight until the desired output is reached. The 

error back-propagation algorithm is used to train the network, using the mean square 

error (MSE) over the training samples as the objective function. One part is used for 

training, the second is used for cross-validation and the third part is used for testing.  

The architecture of the ANN in the present study consisted of an input layer, a hidden 

layer and an output layer. The number of intermediate units was obtained through a 

trial-and-error procedure. The error between the value predicted by the ANN and the 

value actually observed was then measured and propagated backwards along the feed-

forward connection. The final error, after a given number of training cycles, was noted. 

The number of intermediate units that gave the minimum system error was accepted. 

During training, the performance of the ANN was also evaluated on the validation set.  

The ANN and statistical procedures presented above were applied to modeling the daily 

precipitation data from five models (Table 1 – Part 2) derived from IPCC AR4, 

representing the current climate (i.e. 1970-1999), as well as daily observed precipitation 

measured during the concurrent period. The different parameters of each model are 

adjusted during calibration to get the best statistical agreement between observed and 

simulated meteorological variables.  

The downscaling experiment was conducted with the one statistical method 

(autocorrelation) and the ANN methods (back-propagation) presented in section 3.The 

ANN training needs six predictors (five output models plus observation data) as input to 

the network, and the best-performing network is selected. A hyperbolic tangent 

activation function is used at both the hidden and output layers of the ANN and the 

networks are trained using a variation of feed-forward back-propagation algorithms.   

A sensitivity analysis is done to determine the most relevant predictors, which need to 

be selected for further retraining. Sensitivity analysis provides a measure of the relative 

importance among the predictors (input of the ANN) by calculating how the model 

output varies in response to variation of an input. 
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