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Abstract

Performance  evaluation  of  modern  complex  systems  has  become  compulsory  in  order  to 
understand a system's behavior before it is constructed or implemented. Usually either Simulation 
of  Analytical  approaches  are  used to  obtain such understanding.  However,  the  system must, 
somehow,  be  represented.  The  paper  describes  PerformCharts,  a  tool  to  analytically  obtain 
performance  evaluation  of  a  system specified  in  Statecharts.  Until  recently,  the  information 
obtained  were  just  steady-state  probabilities.  Therefore,  this  paper  discusses  how  such 
probabilities were used in order to obtain the performance measures of interest.

1. Introduction

Several applications face with the necessity in evaluating the performance of a given system. By 
evaluating the performance, one can determine how reliable the system is besides finding out 
many other parameters of interest. The systems where their evaluation is studied and analyzed are 
known as performance models.

Performance  models  are,  in  general,  stochastic  models.  In  these  models,  system behavior  is 
usually modeled as a discrete event driven system and represented by a state-transition diagram. 
In this diagram each state represents a physical state of several components of the system (idle, 
busy, failure, etc.) and the transitions among the states occur through events that correspond, for 
example, to some perturbation in the system such as a failure.

Due to their strong mathematical basis, Continuous-Time Markov models are frequently used to 
model reliability and system performance. In these models,  reliability and many performance 
measures can be obtained and these are probability functions of occupying the states during a 
certain period of time or in a long run horizon. Markov models can be represented by state-
transition diagrams. However,  these diagrams make the representation of the behavior of  the 
modeled  complex systems  complicated.  For  example,  by covering all  the  combinations  of  a 
concurrent model the diagram may increase exponentially and consequently leads to a state blow-
up phenomenon (Drusinsky, 1994). A detailed representation may lead to hundreds of thousands 
of states and notions of concurrency and interdependence among the system components become 
difficult to handle. This difficulty brings up the necessity of investigating the use of high level 
tools for specifying complex systems from which a mathematical model can be automatically 
generated.

Complex  systems  involving  parallelism,  synchronization  and  interdependence  of  subsystems 
have become popularly known as reactive systems. The main characteristic of a reactive system 
is its whole behavior is based on reaction to stimulus, also known as events, received by internal 
and  external  media  (Harel,  1987).  These  complex  systems  are  heavily  based  on  controls  or 
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events. In these cases data is not handled just by the description of to and from activities. The 
reaction to different kinds of events, signals and conditions does take place in complex ways. In 
fact, a vast majority of these complex systems in day to day applications are rather reactive in 
nature.

The objective of this paper is to show that a tool, PerformCharts, has been developed in which a 
reactive system is specified in Statecharts and a corresponding Markov chain is obtained. With 
the  Markov chain at  hand,  by applying a  numerical  method to  solve the  chain,  steady state 
probabilities are easily obtained. An important issue missing in this tool are the performance 
measures that are functions of the obtained probabilities. Therefore, the paper also discusses the 
inclusion of such calculations within the tool. A case study is presented in order to show the 
functionality of  the tool.  The paper is  organized as follows:  Section 2 discusses very briefly 
PerformCharts as well as a very short description of Statecharts. Section 3 shows the inclusion of 
the implementation to determine the performance measures. Section 4 covers a case study while 
Section 5 concludes the paper with some remarks.

2. PerformCharts: Obtaining Markov Chain from Statecharts

Before formally presenting PerformCharts tool, some essential elements of Statecharts are briefly 
described. Statecharts have a graphical language to specify reactive systems. They have been 
originally developed to represent and simulate real time systems. They have an added value of 
being formal (Harel et al, 1987) and (Harel & Politi, 1998) and their visual appeal along with the 
potential features enable considering complex logic to represent the behavior of reactive systems. 
They originated  from state-transition  diagrams and these  diagrams have  been  extended with 
notions of hierarchy (depth), orthogonality (parallel activities) and interdependence (broadcast-
communication). Statecharts depend on the following elements in order to represent a reactive 
system: states, events, conditions, actions and transitions. It is also possible to define variables 
and expressions.  Events  are  divided into two categories:  external  and internal  or  immediate. 
External  are  those  that  have  to  be  explicitly  stimulated  whereas  internal  are  those  that  are 
automatically  sensed  by  Statecharts  dynamics  and  reaction  takes  place.  This  is  the  same  as 
defined  in  Statecharts.  However,  for  the  application  in  performance  evaluation,  the  external 
events carry a stochastic information which is exponentially distributed in order to be associated 
with Markov chains. Actions, within the context of performance evaluation, are considered as 
internal events that affect other orthogonal components.

States are clustered to represent depth, thus enabling to combine a set of states with common 
transitions into a super-state. Super-states are usually refined into further sub-states in a top down 
approach.  State  refinement  can be  achieved  by XOR and AND decompositions.  The former 
decomposition is employed whenever an encapsulation is a must to improve the clarity of the 
visualization. When an XOR super-state is active, one (and only one) of its sub-states is indeed 
active.  The latter  approach,  AND decomposition,  is  used to represent  concurrency and when 
active,  all  of  its  sub-states are active.  The state that  contains no more further refinements is 
known as BASIC.

In Statecharts the global state of a given model is referred to as a configuration that is the active 
basic states of each orthogonal component. In Statecharts, by definition, when modeling a given 
system, there must always be an initial state also known as default state. This is the entry point of 
the system. Another way to enter a system is through its history, i.e. when a system is entered the 
state most recently visited is activated, thus bypassing the initial state. In order to indicate that 
history is to be used instead of entry by default, the symbol H is provided. It is also possible to 
use the history all  the way down to the lowest  level  as defined in the Statecharts formalism 
(Harel, 1987) by applying the symbol H*.

This was just a very short introduction to Statecharts. Now, the description on PerformCharts is 
in order. A Markov Chain, within the scope of this work, a Continuous-Time Markov Chain, 
consisting  of  transition  rates  among  states  is  the  input  to  the  available  numerical  methods 
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(Philippe et al.,  1992) and (Silva & Muntz, 1992) to determine the steady-state probabilities. 
Therefore, the problem of constructing a Markov model will be solved if the model represented 
in  Statecharts  generates  the  Markov chain  that  corresponds  to  the  behavior  of  the  specified 
model.

Algorithm, in this paper,  is explained in an informal manner. Formal algorithms are given in 
(Vijaykumar et al, 2006). Once the model is specified in Statecharts, the first step is to check 
which events are to be triggered for the initial configuration determined by default states of each 
parallel component. Internal (or immediate) events are the ones that are sensed and automatically 
triggered. As long as such events are active for the initial and resulting configurations, reactions 
continuously take place by changing one configuration to another until a configuration is reached 
from which no more internal events are enabled. The next step deals with the stochastic events 
which are explicitly stimulated. Therefore, for the resulting configuration from internal events, 
enabled  stochastic  events  are  listed  and  triggered  so  that  transitions  are  fired  yielding  new 
configurations. In order to make the association of a Statecharts model with a Markov Chain, the 
only type of events considered are those that follow a stochastic distribution. In particular, for 
Continuous-Time Markov Chains, this distribution has to be exponential. Once a configuration is 
obtained, internal events, if enabled, are triggered, firing transitions to yield new configurations. 
In both the cases, actions are also considered if they are associated in a transition. In this case a 
reaction occurs whenever appropriate,  based on the action which is considered as an internal 
event. This process continues until all the configurations have been expanded. The result is a 
structure with a source configuration, stimulated stochastic event (along with its rate), and the 
target configuration. This structure is, indeed, a Markov Chain (specified as a transition matrix) 
with which steady-state probabilities can be determined.

Now, to understand the whole process, from specification to generation of the Markov Chain, 
consider a Standby Redundancy System with two machines (Machine 1 and Machine 2) where 
each machine is a standby for the other (Viswanadham & Narahari,  1988).  Machine 1 has a 
priority to process a job when both the machines are idle and in working conditions. Machine 2 
takes  up  the  job  whenever  Machine  1  fails  and  simultaneously,  Machine  1  is  repaired.  Yet 
Machine 2 may also break down while it is processing. In this case the job will be transferred to 
Machine 1 if it is in working condition. This model is shown in Figure 1.

Figure 1. Standby Redundancy System specified in Statecharts

Figure 1 shows two parallel components Machine 1 and Machine 2 whose sub-states are Waiting 
(W1 and W2), Processing (P1 and P2) and Failure (B1 and B2). The initial states for Machine 1 
and Machine 2 are respectively P1 and W2. Events γ1 and γ2 refer to end of processing. A failure 
occurs through β1 and β2 whereas end of repair through µ1 and µ2. Machine 1 has a priority over 
Machine 2 which takes over only when Machine 1 breaks and this fact uses the true conditioned 
event (immediate event)  tr[in(B1)]. Now, this representation is converted into a Markov chain, 
shown in Figure 2.
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Figure 2. Markov chain of Figure 1

This state-transition diagram has a one-to-one correspondence with a transition matrix where 
rows and columns correspond to the configurations and the elements of the matrix correspond to 
the  transition  rates.  If  the  events  in  the  transitions  between  states  follow  an  exponential 
distribution, this graph is considered as a Markov Chain. The corresponding transition matrix of 
the Markov Chain of Figure 2 with the input rates is shown in Table I. These rates have been 
arbitrarily provided in order to illustrate the input parameters for determining the steady-state 
probabilities.

{P1, W2} {B1, P2} {W1, P2} {B1, B2} {P1, B2}
{P1, W2} γ 1 (5.0) β 1 (0.1) 0.0 0.0 0.0

{B1, P2} 0.0 γ2 (5.0) µ1 (3.0) β 2(0.2) 0.0

{W1, P2} γ 2(5.0) 0.0 0.0 0.0 β 2 (0.2)

{B1, B2} 0.0 µ2 (3.0) 0.0 0.0 µ1 (3.0)

{P1, B2} µ2 (3.0) 0.0 0.0 β 1 (0.1) γ 1 (5.0)

Table I. Input parameters for Figure 1

This transition matrix (or Markov Chain) when solved, steady-state probabilities are obtained and 
shown in Table II.  The solution method implemented is  SOR (Successive Over Relaxation). 
These  probabilities  represent  percentage  of  time  occupied  in  each  configuration.  With  these 
probabilities, one can easily find the steady-state probability of each basic state. For instance, in 
order to determine the steady-state probability of state P1, the sum of steady-state probabilities of 
those configurations consisting of state P1 has to be performed. In Table II, by adding 0.948475 
(referring to configuration {P1,W2}) with 0.00216554 (referring to configuration {P1,B2}), the 
steady-state probability of state P1 which is 0.95064054 is obtained. As explained elsewhere, 
these are the most basic measures. Other measures such as clients in the system, throughput and 
others can be calculated and this is shown in Section 3.

Configurations Steady-State 
Probabilities

{P1, W2} 0.948475
{B1, P2} 0.030631
{W1, P2} 0.0176717
{B1, B2} 0.00105715
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{P1, B2} 0.00216554
Table II. Steady-state probabilities obtained for the Markov chain of Figure 2

Now that PerformCharts was presented a few words should be dedicated of how to interact with 
the tool. The tool was developed in C++. Therefore, the interface of the specification as well as 
the calls to the methods to generate the Markov chain and the calculations to perform steady-state 
probabilities have to be coded in the main program. In order to make this process a little more 
comfortable, a language PcML (PerformCharts Markup Language) based on XML (eXtensible 
Markup  Language)  was  developed.  This  language  is  interpreted  through  a  Perl  script  that 
converts it into the main program.

3. From Steady-State Probabilities to Performance Measures

The previous section showed how to obtain steady-state probabilities of a given system modeled 
in Statecharts. Based on these probabilities, several interesting metrics that refer to the system 
behavior in a long run can be obtained. These metrics are known as performance measures.

Performance measures are quantified values that determine certain features of a given model. For 
example, a queue in a market, utilization of servers of a database, inspection of machines in a 
maintenance  center,  etc.  are  those  measures.  These  measures  play  a  major  role  in  decision 
making  such  as  including  one  more  teller  to  attend  the  queue,  shut  off  a  server,  hire  more 
personnel to repair, etc. The objective of this Section is to show the implementation included 
within PerformCharts tool to calculate the performance measures that are function of the steady-
state probabilities.

Within the  context  of  PerformCharts,  when a  Markov chain is  obtained  it  contains  a  set  of 
configurations (basic states of  each orthogonal  component)  and when calculated,  steady-state 
probabilities of each configuration are provided. Therefore, some basic measures such as mean 
quantities  of  input  and  output  of  each  basic  state  of  Statecharts  are  readily  calculated.  The 
formulae to calculate such quantities are: transition rate on the arc moving to the state in question 
*  steady-state  probability  of  that  state;  transition  rate  on  the  arc  moving  out  of  the  state  in 
question * steady-state probability of that state.

As an example, in order to determine the mean quantities of output for P1, one has to do the 
following calculation:  (0.9484*5.0 + 0.9484*0.1) + (0.0021*3.0 + 0.0021*0.1+0.0021*5.0) = 
4.8423. Table III shows these two measures provided for all the basic states of Figure 1.

States Mean Values of Input Mean Values of Output
W1 0.0530197 0.0919009
P1 12.3478 4.85479
B1 0.24844 0.257532
W2 12.3299 4.83712
P2 0.301142 0.343087
B2 0.0182106 0.0240212

Table III. Performance Measures for the example shown in Figure 1

Several  other  kinds of  performance measures can also be obtained by means of  steady-state 
probabilities, especially in systems modeled as queues. A case study in the following Section 
deals with one such example. 

4. Case Study

In  order  to  illustrate  the  implementation  of  performance  measures  calculation,  consider  a 
communication system in which a message arrives with a rate of 60 messages per minute (λ) and 
if  the  sender  component  is  busy,  the  message is  placed in  a  buffer.  The arrival  rate  has  an 
exponential distribution. The system operates at a maximum rate 52 kbps; however, there is an 
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influence due to noise and this rate decreases to 40 kbps (µ). Both these rates also possess an 
exponential distribution. The capacity for the buffer to store the messages is 3 x 105 bits. The 
system specified in Statecharts is shown in Figure 3. 

This specification is converted into a Markov chain with the buffer size of 3. Once the Markov 
chain is resolved,  the performance measures were obtained and were compared with another 
approach  using  simulation  in  order  to  validate  the  implementation.  The  simulation  approach 
made use  of  Arena software  system (http://www.arenasimulation.com) in  order  to  obtain the 
results.

Figure 3. Communication system specified in Statecharts

Some other tests were also performed based on the same example shown in Figure 3. The buffer 
size was increased to 5 and 10. Again, for the buffer sizes of 3, 5 and 10 two servers, instead of 
one, were considered. The results when compared to those obtained from simulation were quite 
similar thus validating the implementation of the calculation of performance measures. Tables IV 
and V show the results from these runs.

Metrics Analytical results Simulation results

Buffer size 3 5 10 3 5 10

Mean waiting time 6.09 s 10.89 23.41 6.06 s 10.88 22.98

Mean response time 8.59 s 13.39 25.91 8.56 s 13.39 25.47

Mean queue size 2.40 4.34 9.36 2.39 4.34 9.29

Mean number of 
clients in the system

3.35 5.34 10.36 3.37 5.33 10.29

Table IV. Analytical and simulation results with one server
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Metrics Analytical results Simulation results

Buffer size 3 5 10 3 5 10

Mean waiting time 2.07 s 3.78 8.71 2.04 s 3.79 8.77

Mean response time 4.57 s 6.28 11.21 4.52 s 6.29 11.27

Mean queue size 1.48 2.84 6.85 1.48 2.85 6.91

Mean number of 
clients in the system

3.27 4.73 8.82 3.27 4.74 8.88

Table V. Analytical and simulation results with two servers

5. Final Remarks
Modeling has become essential in dealing with complex systems in order to conduct several types 
of analysis so that when the actual system is in fact implemented or constructed, errors can be 
minimized if at all cannot be entirely eliminated. With respect to this issue, Statecharts can be 
considered a potential candidate to represent complex reactive systems. Moreover, it has been 
shown that a mathematical solution can indeed be associated with the representation in order to 
obtain, in this case, performance information. The paper showed how to deal with Markov chains 
when a complex reactive system is specified in Statecharts by presenting PerformCharts tool. In 
the  beginning,  only  steady-state  probabilities  were  the  output  of  the  tool.  Now,  some more 
routines have been incorporated to the tool to yield performance measures that are functions of 
the steady-state probabilities.
In order to test whether the implementation correctly calculates the performance measures, same 
models were also introduced into a simulation approach. The results were compared and were 
satisfactory thus validating the implementation.
The interface to deal  with PerformCharts  is  a  textual  one but  based on XML language.  The 
language is interpreted through a perl script to generate the main program in C++. The graphical 
interface is under development and this interface will be converted into the PcML specification.
This same tool is also being used to generate test sequences to perform black box testing.  The 
same  logic  applied  for  performance  evaluation  is  also  utilized  in  this  case.  The  Statecharts 
representation of a software specification is converted into a Finite State Machine from which 
test sequence generating methods are employed and in turn these sequences are submitted to the 
implementation to determine a verdict whether the implementation conforms to its specification.
Another development is under progress that should enable the access to PerformCharts for both 
performance evaluation and test sequence generation via internet.
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