
From Steady-State Probabilities to Performance Measures for Complex Reactive Systems
specified in Statecharts

Nandamudi L. Vijaykumar1, Sóstenes Pereira Gomes2 , Marcelino Silva da Silva3, Solon
Venâncio de Carvalho1, Carlos Renato Lisboa Francês3

1Laboratory of Computing and Applied Mathematics (LAC)
2Graduate Student, Applied Computing (CAP)

National Institute for Space Research
P. O. Box 515

12245-970 São José dos Campos, SP, Brazil
{vijay, sostenes, solon}@lac.inpe.br

3Department of Electrical Engineering
Federal University of Pará (UFPA), Belém, PA, Brazil

{marcelino, rfrances}@ufpa.br
Abstract

Performance evaluation of modern complex systems has become compulsory in order to
understand a system's behavior before it is constructed or implemented. Usually either Simulation
of Analytical approaches are used to obtain such understanding. However, the system must,
somehow, be represented. The paper describes PerformCharts, a tool to analytically obtain
performance evaluation of a system specified in Statecharts. Until recently, the information
obtained were just steady-state probabilities. Therefore, this paper discusses how such
probabilities were used in order to obtain the performance measures of interest.

1. Introduction

Several applications face with the necessity in evaluating the performance of a given system. By
evaluating the performance, one can determine how reliable the system is besides finding out
many other parameters of interest. The systems where their evaluation is studied and analyzed are
known as performance models.

Performance models are, in general, stochastic models. In these models, system behavior is
usually modeled as a discrete event driven system and represented by a state-transition diagram.
In this diagram each state represents a physical state of several components of the system (idle,
busy, failure, etc.) and the transitions among the states occur through events that correspond, for
example, to some perturbation in the system such as a failure.

Due to their strong mathematical basis, Continuous-Time Markov models are frequently used to
model reliability and system performance. In these models, reliability and many performance
measures can be obtained and these are probability functions of occupying the states during a
certain period of time or in a long run horizon. Markov models can be represented by state-
transition diagrams. However, these diagrams make the representation of the behavior of the
modeled complex systems complicated. For example, by covering all the combinations of a
concurrent model the diagram may increase exponentially and consequently leads to a state blow-
up phenomenon (Drusinsky, 1994). A detailed representation may lead to hundreds of thousands
of states and notions of concurrency and interdependence among the system components become
difficult to handle. This difficulty brings up the necessity of investigating the use of high level
tools for specifying complex systems from which a mathematical model can be automatically
generated.

Complex systems involving parallelism, synchronization and interdependence of subsystems
have become popularly known as reactive systems. The main characteristic of a reactive system
is its whole behavior is based on reaction to stimulus, also known as events, received by internal
and external media (Harel, 1987). These complex systems are heavily based on controls or

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 798

events. In these cases data is not handled just by the description of to and from activities. The
reaction to different kinds of events, signals and conditions does take place in complex ways. In
fact, a vast majority of these complex systems in day to day applications are rather reactive in
nature.

The objective of this paper is to show that a tool, PerformCharts, has been developed in which a
reactive system is specified in Statecharts and a corresponding Markov chain is obtained. With
the Markov chain at hand, by applying a numerical method to solve the chain, steady state
probabilities are easily obtained. An important issue missing in this tool are the performance
measures that are functions of the obtained probabilities. Therefore, the paper also discusses the
inclusion of such calculations within the tool. A case study is presented in order to show the
functionality of the tool. The paper is organized as follows: Section 2 discusses very briefly
PerformCharts as well as a very short description of Statecharts. Section 3 shows the inclusion of
the implementation to determine the performance measures. Section 4 covers a case study while
Section 5 concludes the paper with some remarks.

2. PerformCharts: Obtaining Markov Chain from Statecharts

Before formally presenting PerformCharts tool, some essential elements of Statecharts are briefly
described. Statecharts have a graphical language to specify reactive systems. They have been
originally developed to represent and simulate real time systems. They have an added value of
being formal (Harel et al, 1987) and (Harel & Politi, 1998) and their visual appeal along with the
potential features enable considering complex logic to represent the behavior of reactive systems.
They originated from state-transition diagrams and these diagrams have been extended with
notions of hierarchy (depth), orthogonality (parallel activities) and interdependence (broadcast-
communication). Statecharts depend on the following elements in order to represent a reactive
system: states, events, conditions, actions and transitions. It is also possible to define variables
and expressions. Events are divided into two categories: external and internal or immediate.
External are those that have to be explicitly stimulated whereas internal are those that are
automatically sensed by Statecharts dynamics and reaction takes place. This is the same as
defined in Statecharts. However, for the application in performance evaluation, the external
events carry a stochastic information which is exponentially distributed in order to be associated
with Markov chains. Actions, within the context of performance evaluation, are considered as
internal events that affect other orthogonal components.

States are clustered to represent depth, thus enabling to combine a set of states with common
transitions into a super-state. Super-states are usually refined into further sub-states in a top down
approach. State refinement can be achieved by XOR and AND decompositions. The former
decomposition is employed whenever an encapsulation is a must to improve the clarity of the
visualization. When an XOR super-state is active, one (and only one) of its sub-states is indeed
active. The latter approach, AND decomposition, is used to represent concurrency and when
active, all of its sub-states are active. The state that contains no more further refinements is
known as BASIC.

In Statecharts the global state of a given model is referred to as a configuration that is the active
basic states of each orthogonal component. In Statecharts, by definition, when modeling a given
system, there must always be an initial state also known as default state. This is the entry point of
the system. Another way to enter a system is through its history, i.e. when a system is entered the
state most recently visited is activated, thus bypassing the initial state. In order to indicate that
history is to be used instead of entry by default, the symbol H is provided. It is also possible to
use the history all the way down to the lowest level as defined in the Statecharts formalism
(Harel, 1987) by applying the symbol H*.

This was just a very short introduction to Statecharts. Now, the description on PerformCharts is
in order. A Markov Chain, within the scope of this work, a Continuous-Time Markov Chain,
consisting of transition rates among states is the input to the available numerical methods

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 799

(Philippe et al., 1992) and (Silva & Muntz, 1992) to determine the steady-state probabilities.
Therefore, the problem of constructing a Markov model will be solved if the model represented
in Statecharts generates the Markov chain that corresponds to the behavior of the specified
model.

Algorithm, in this paper, is explained in an informal manner. Formal algorithms are given in
(Vijaykumar et al, 2006). Once the model is specified in Statecharts, the first step is to check
which events are to be triggered for the initial configuration determined by default states of each
parallel component. Internal (or immediate) events are the ones that are sensed and automatically
triggered. As long as such events are active for the initial and resulting configurations, reactions
continuously take place by changing one configuration to another until a configuration is reached
from which no more internal events are enabled. The next step deals with the stochastic events
which are explicitly stimulated. Therefore, for the resulting configuration from internal events,
enabled stochastic events are listed and triggered so that transitions are fired yielding new
configurations. In order to make the association of a Statecharts model with a Markov Chain, the
only type of events considered are those that follow a stochastic distribution. In particular, for
Continuous-Time Markov Chains, this distribution has to be exponential. Once a configuration is
obtained, internal events, if enabled, are triggered, firing transitions to yield new configurations.
In both the cases, actions are also considered if they are associated in a transition. In this case a
reaction occurs whenever appropriate, based on the action which is considered as an internal
event. This process continues until all the configurations have been expanded. The result is a
structure with a source configuration, stimulated stochastic event (along with its rate), and the
target configuration. This structure is, indeed, a Markov Chain (specified as a transition matrix)
with which steady-state probabilities can be determined.

Now, to understand the whole process, from specification to generation of the Markov Chain,
consider a Standby Redundancy System with two machines (Machine 1 and Machine 2) where
each machine is a standby for the other (Viswanadham & Narahari, 1988). Machine 1 has a
priority to process a job when both the machines are idle and in working conditions. Machine 2
takes up the job whenever Machine 1 fails and simultaneously, Machine 1 is repaired. Yet
Machine 2 may also break down while it is processing. In this case the job will be transferred to
Machine 1 if it is in working condition. This model is shown in Figure 1.

Figure 1. Standby Redundancy System specified in Statecharts

Figure 1 shows two parallel components Machine 1 and Machine 2 whose sub-states are Waiting
(W1 and W2), Processing (P1 and P2) and Failure (B1 and B2). The initial states for Machine 1
and Machine 2 are respectively P1 and W2. Events γ1 and γ2 refer to end of processing. A failure
occurs through β1 and β2 whereas end of repair through µ1 and µ2. Machine 1 has a priority over
Machine 2 which takes over only when Machine 1 breaks and this fact uses the true conditioned
event (immediate event) tr[in(B1)]. Now, this representation is converted into a Markov chain,
shown in Figure 2.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 800

Figure 2. Markov chain of Figure 1

This state-transition diagram has a one-to-one correspondence with a transition matrix where
rows and columns correspond to the configurations and the elements of the matrix correspond to
the transition rates. If the events in the transitions between states follow an exponential
distribution, this graph is considered as a Markov Chain. The corresponding transition matrix of
the Markov Chain of Figure 2 with the input rates is shown in Table I. These rates have been
arbitrarily provided in order to illustrate the input parameters for determining the steady-state
probabilities.

{P1, W2} {B1, P2} {W1, P2} {B1, B2} {P1, B2}
{P1, W2} γ 1 (5.0) β 1 (0.1) 0.0 0.0 0.0

{B1, P2} 0.0 γ2 (5.0) µ1 (3.0) β 2(0.2) 0.0

{W1, P2} γ 2(5.0) 0.0 0.0 0.0 β 2 (0.2)

{B1, B2} 0.0 µ2 (3.0) 0.0 0.0 µ1 (3.0)

{P1, B2} µ2 (3.0) 0.0 0.0 β 1 (0.1) γ 1 (5.0)

Table I. Input parameters for Figure 1

This transition matrix (or Markov Chain) when solved, steady-state probabilities are obtained and
shown in Table II. The solution method implemented is SOR (Successive Over Relaxation).
These probabilities represent percentage of time occupied in each configuration. With these
probabilities, one can easily find the steady-state probability of each basic state. For instance, in
order to determine the steady-state probability of state P1, the sum of steady-state probabilities of
those configurations consisting of state P1 has to be performed. In Table II, by adding 0.948475
(referring to configuration {P1,W2}) with 0.00216554 (referring to configuration {P1,B2}), the
steady-state probability of state P1 which is 0.95064054 is obtained. As explained elsewhere,
these are the most basic measures. Other measures such as clients in the system, throughput and
others can be calculated and this is shown in Section 3.

Configurations Steady-State
Probabilities

{P1, W2} 0.948475
{B1, P2} 0.030631
{W1, P2} 0.0176717
{B1, B2} 0.00105715

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 801

{P1, B2} 0.00216554
Table II. Steady-state probabilities obtained for the Markov chain of Figure 2

Now that PerformCharts was presented a few words should be dedicated of how to interact with
the tool. The tool was developed in C++. Therefore, the interface of the specification as well as
the calls to the methods to generate the Markov chain and the calculations to perform steady-state
probabilities have to be coded in the main program. In order to make this process a little more
comfortable, a language PcML (PerformCharts Markup Language) based on XML (eXtensible
Markup Language) was developed. This language is interpreted through a Perl script that
converts it into the main program.

3. From Steady-State Probabilities to Performance Measures

The previous section showed how to obtain steady-state probabilities of a given system modeled
in Statecharts. Based on these probabilities, several interesting metrics that refer to the system
behavior in a long run can be obtained. These metrics are known as performance measures.

Performance measures are quantified values that determine certain features of a given model. For
example, a queue in a market, utilization of servers of a database, inspection of machines in a
maintenance center, etc. are those measures. These measures play a major role in decision
making such as including one more teller to attend the queue, shut off a server, hire more
personnel to repair, etc. The objective of this Section is to show the implementation included
within PerformCharts tool to calculate the performance measures that are function of the steady-
state probabilities.

Within the context of PerformCharts, when a Markov chain is obtained it contains a set of
configurations (basic states of each orthogonal component) and when calculated, steady-state
probabilities of each configuration are provided. Therefore, some basic measures such as mean
quantities of input and output of each basic state of Statecharts are readily calculated. The
formulae to calculate such quantities are: transition rate on the arc moving to the state in question
* steady-state probability of that state; transition rate on the arc moving out of the state in
question * steady-state probability of that state.

As an example, in order to determine the mean quantities of output for P1, one has to do the
following calculation: (0.9484*5.0 + 0.9484*0.1) + (0.0021*3.0 + 0.0021*0.1+0.0021*5.0) =
4.8423. Table III shows these two measures provided for all the basic states of Figure 1.

States Mean Values of Input Mean Values of Output
W1 0.0530197 0.0919009
P1 12.3478 4.85479
B1 0.24844 0.257532
W2 12.3299 4.83712
P2 0.301142 0.343087
B2 0.0182106 0.0240212

Table III. Performance Measures for the example shown in Figure 1

Several other kinds of performance measures can also be obtained by means of steady-state
probabilities, especially in systems modeled as queues. A case study in the following Section
deals with one such example.

4. Case Study

In order to illustrate the implementation of performance measures calculation, consider a
communication system in which a message arrives with a rate of 60 messages per minute (λ) and
if the sender component is busy, the message is placed in a buffer. The arrival rate has an
exponential distribution. The system operates at a maximum rate 52 kbps; however, there is an

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 802

influence due to noise and this rate decreases to 40 kbps (µ). Both these rates also possess an
exponential distribution. The capacity for the buffer to store the messages is 3 x 105 bits. The
system specified in Statecharts is shown in Figure 3.

This specification is converted into a Markov chain with the buffer size of 3. Once the Markov
chain is resolved, the performance measures were obtained and were compared with another
approach using simulation in order to validate the implementation. The simulation approach
made use of Arena software system (http://www.arenasimulation.com) in order to obtain the
results.

Figure 3. Communication system specified in Statecharts

Some other tests were also performed based on the same example shown in Figure 3. The buffer
size was increased to 5 and 10. Again, for the buffer sizes of 3, 5 and 10 two servers, instead of
one, were considered. The results when compared to those obtained from simulation were quite
similar thus validating the implementation of the calculation of performance measures. Tables IV
and V show the results from these runs.

Metrics Analytical results Simulation results

Buffer size 3 5 10 3 5 10

Mean waiting time 6.09 s 10.89 23.41 6.06 s 10.88 22.98

Mean response time 8.59 s 13.39 25.91 8.56 s 13.39 25.47

Mean queue size 2.40 4.34 9.36 2.39 4.34 9.29

Mean number of
clients in the system

3.35 5.34 10.36 3.37 5.33 10.29

Table IV. Analytical and simulation results with one server

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 803

Metrics Analytical results Simulation results

Buffer size 3 5 10 3 5 10

Mean waiting time 2.07 s 3.78 8.71 2.04 s 3.79 8.77

Mean response time 4.57 s 6.28 11.21 4.52 s 6.29 11.27

Mean queue size 1.48 2.84 6.85 1.48 2.85 6.91

Mean number of
clients in the system

3.27 4.73 8.82 3.27 4.74 8.88

Table V. Analytical and simulation results with two servers

5. Final Remarks
Modeling has become essential in dealing with complex systems in order to conduct several types
of analysis so that when the actual system is in fact implemented or constructed, errors can be
minimized if at all cannot be entirely eliminated. With respect to this issue, Statecharts can be
considered a potential candidate to represent complex reactive systems. Moreover, it has been
shown that a mathematical solution can indeed be associated with the representation in order to
obtain, in this case, performance information. The paper showed how to deal with Markov chains
when a complex reactive system is specified in Statecharts by presenting PerformCharts tool. In
the beginning, only steady-state probabilities were the output of the tool. Now, some more
routines have been incorporated to the tool to yield performance measures that are functions of
the steady-state probabilities.
In order to test whether the implementation correctly calculates the performance measures, same
models were also introduced into a simulation approach. The results were compared and were
satisfactory thus validating the implementation.
The interface to deal with PerformCharts is a textual one but based on XML language. The
language is interpreted through a perl script to generate the main program in C++. The graphical
interface is under development and this interface will be converted into the PcML specification.
This same tool is also being used to generate test sequences to perform black box testing. The
same logic applied for performance evaluation is also utilized in this case. The Statecharts
representation of a software specification is converted into a Finite State Machine from which
test sequence generating methods are employed and in turn these sequences are submitted to the
implementation to determine a verdict whether the implementation conforms to its specification.
Another development is under progress that should enable the access to PerformCharts for both
performance evaluation and test sequence generation via internet.

References

Drusinsky, D. Extended State Diagrams and Reactive Systems. Dr. Dobb’s Journal, Vol. 19, n.
11, p.72-80, 1994.

Harel, D. Statecharts: a visual formalism for complex systems. Science of Computer
Programming, Vol. 8, p. 231-274, 1987.

Harel, D., Pnueli, A., Schmidt, J., Sherman, R. On the formal semantics of Statecharts. In:
Proceedings of IEEE Symposium On Logic In Computer Science, Ithaca, USA. p.54-64, 1987.

Harel, D., Politi, M. Modeling Reactive Systems with Statecharts: the Statemate Approach.
McGraw-Hill, USA, 1998.

Philippe, B., Saad, Y., Stewart, W. J. Numerical Methods in Markov Chain modeling.
Operations Research. Vol. 40, n. 6, p.1156-1179, 1992.

Silva, E.A.S., Muntz, R.R. Métodos Computacionais de Solução de Cadeias de Markov:
Aplicações a Sistemas de Computação e Comunicação. VIII Escola de Computação. UFRGS,
Gramado, Brazil, 1992.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 804

Vijaykumar, N.L., Carvalho, S.V., Andrade, V.M.B., Abdurahiman, V. On embedding
Memory in Markov Models specified in Statecharts. In: Anais em CD-ROM do WPerformance –
I Workshop em Desempenho de Sistemas de Computação e de Comunicação, Florianópolis, SC,
Brazil, p.1394-1405, 2002.

Vijaykumar, N.L., Carvalho, S.V., Francês, C.R.L., Abdurahiman, V. Performance
Evaluation from Statecharts representation of Complex Systems: Markov Approach. In: Anais
em CD-ROM do WPerformance – V Workshop em Desempenho de Sistemas de Computação e
de Comunicação, Campo Grande, MS, Brazil, p.183-202, 2006.

Viswanadham, N., Narahari, Y. Stochastic Petri net models for performance evaluation of
automated manufacturing systems. Information and Decision Technologies, Vol. 14, p.125-142,
1988.

XLI SBPO 2009 - Pesquisa Operacional na Gestão do Conhecimento Pág. 805

