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Belinskii, Khalatnikov and Lifishitz [1] started the ques-
tion of chaotic behaviour of general Bianchi IX models in
Relativistic Cosmology. The interest in the chaoticity (or not)
of Bianchi IX models has been mainly focused on the Mix-
master case (vacuum Bianchi IX models with three scale fac-
tors [2]). The question of the generic behaviour (chaotic or
not) of the Mixmaster dynamics remained unsettled mainly
due to the absence of an invariant (or topological) character-
ization of chaos in the model (standard chaotic indicators as
Liapunov exponents being coordinate dependent and there-
fore questionable [3, 4]). For discussions of the issue of
chaotic dynamics on these models we refer to the works of
[5-9].

In this work we study the dynamics of the axisymmet-
ric Bianchi IX cosmological model. The phase space of
such classical model is noncompact and the presence of the
cosmological constant determines two crucial facts in phase
space: first, the existence of a critical point of the saddle-
center type; second, two critical points at infinity correspond-
ing to the attractor configuration, one acting as an “atractor”
to the dynamics and the other as a “repeller". With respect
to the latter point, this system has mathematically the char-
acteristics of a chaotic scattering system with two abosolute
outcomes consisting of (i) escape to infinity or (ii) recollapse
to the singularity. The presence of this critical point is re-
sponsible for a rich and complex dynamics, engendering in
phase space topological structures such as homoclinic orbits
to a center manifold. The physical singularities are the main
point in the whole discussion, that is, when any one of the
scale factors crosses zero, meaning a recollapse of the uni-
verse. As showed in [10] any homoclinic crossings present in
the dynamics of the classical model is not seen by the physi-
cal world since the mandatory recurrence is lost because the
physical dynamics has to be restricted to A(¢) and B(t), the
scale factors, greater than zero. Therefore the only separa-
tion between recollapse and escape to the attractor at infinity
are the unstable and stable manifolds corresponding to the
center manifold associated to the Einstein singularity. This
establishes the difference between physical and mathemati-

cal integrability: in spite of the chaotic dynamics present in
the equations the physical meaningful region does not see it
(see also [11]).

In the present work we study the dynamics of the Bianchi
IX cosmological model as in [10] to which we add a term
of quantum potential inspired by the work of Alvarenga et
al. [12] whose presence represents exactly the short-range
effects due to the quantum behavior of matter in small scales
and plays the role of a repulsive force near the singularity. In
this work a similar term has been introduced in an “ad hoc"
manner. As it will be seen, this potential restricts the dy-
namics of the model to the positive values of A(t) and B(t)
and alters some qualitative and quantitative characteristics of
the dynamics of the classical model. We show the common
features of a large class of such potentials which depends
only on a so-called r-equivalent variable: (AB?)'/3, Pick-
ing a particular example, we make a complete analysis of
the phase space of the model finding critical points, periodic
orbits, stable/unstable manifolds using numerical techniques
such as Poincaré section, numerical continuation of orbits
and numerical globalization of invariant manifolds. We com-
pare the classical and the quantum models and verify that the
addition of this quantum term allows the existence of homo-
clinic crossings of the stable and unstable manifolds in the
physical meaninful region of the phase space (both A(¢) and
B(t) positive) thus allowing chaotic escape to inflation as
well as chaotic bouncing near the singularity due to a new
center-center equilibrium point.
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