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Abstract: We introduce a method to improve maps by
adding prior informations and/or constraints. The method
starts from an initial map model, wherefrom a likelihood
function is defined which is regulated by a temperature-like
parameter. Then, the new constraints are added by the use of
Bayes rule in the prior distribution. We applied the method
to the logistic map of population growth of single species.
We show that the population size is limited for all ranges of
parameters, allowing thus to overcome difficulties in inter-
pretation of the concept of carrying capacity known as the
Levins’ paradox.
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1. INTRODUCTION

Since the very beginnings of the studies of what is now
calledpopulation biology, by Thomas Malthus in 1798, the
development of mathematical methods to adequately express
the biological concepts has been a central point of the theory.
Differential equations, maps and stochastic processes area
few of the modern methods employed, allowing the results
to be put in analogy to systems in the physical sciences, a
well as with the economical theory [2].

Malthusian theory is based on a constant rate of
compound interest, implying an exponential population
growth. The underlying hypothesis is that the population
is unchecked, that is, there are no limitations to its growth.
To overcome this population explosion, P. F. Verhulst pro-
posed to adjust the intrinsic rate of increase, defined as
Rt = (Nt+1−Nt)/Nt and constant in the Malthusian model,
by a nonlinear factorRt = r (1 − Nt/K), with r being the
growth rate, Nt the population density andK the carrying
capacity.

Although the Verhulst model1 overcomes the problem of
explosive growth, conceptual problems arise in the interpre-
tation of the carrying capacityK. A criticism consists in
what is known asLevins’ paradox[4]. This paradox appears
when we have a negative growth rate and an initial population
greater than the carrying capacity (Nt > K). In this case, in-
stead of reductions in the population size, since a negativer

1Known aslogistic model.

means a death rate greater then the birth, the logistic model
presents unbounded growth.

Some authors work out a new definition of carrying ca-
pacity. Gabriel et al. [3] discussed this scenario using a
restriction for the region of validity of the equation model.
First, these authors showed that settingK in function of r,
in such a way thatK andr have the same sign, would be
enough to solve the Levins’ paradox. But, this gauge would
bring difficulties to interpretK, since a negative carrying ca-
pacity makes no sense. Therefore, in a second step, the au-
thors redefined the carrying capacity asK∞ = limt→∞ Nt

in such way thatK∞ is greater then zero forr > 0 and
zero forr < 0, keepingK as a simple model parameter with
sign(K) = sign(r).

Although this procedure solves the mathematical paradox
and in this way has been useful in practice, we are indeed
changing the concept of the carrying capacity. It gives us the
population of a species that is supported, given the mount
food supply, habitat, and other resources available withinan
environment. Of course, this capacity can be depredated by
the population or improved by planed acts. But this changing
(improvement or depredation) can also be developed by the
environment independent of the population actions. There-
fore, it is interesting to search by another solution that takes
account more realistic properties of the observed systems.
In this direction, we propose a new method to improve map
equations taking account some prior information.

2. THE METHOD

Given a mapmt+1 = mt + f(mt) and some constraints
involving ∆mt ≡ mt+1 − mt and parameters fromf(...),
the proposal is to write the constraints as a prior probability
distribution and obtain a new map by averaging the variable
of interest over the probability of∆mt be given byf(mt)
times the prior.

The probability of∆mt givenmt is defined by the Boltz-
mann factorL(∆mt|mt) ∝ exp{−βV }, with β been an in-
verse temperature parameter (related to noise) andV a func-
tion of ∆mt − f(mt). The constraints are introduced by a
prior distribution, which represents the knowledge state from
empirical source or what it is expected from the model. In
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Figure 1 – The evolution of the 〈Nt〉 /K given by 〈∆Nt〉 =

〈Rt〉 〈Nt〉 and the Eq. (2) with: r = 0.5 to circle and square
symbols andr = −0.5 to triangles.

our case, this information is about the decrease of the pop-
ulation size whenr < 0 and the convergence toK when
r > 0. In this direction, we suggest to encode this prior in-
formation as

p(mt) =
[1 − Θ(−r)Θ(mt − K)]mt exp{−mt/κ}/κ2

1 − Θ(−r)(1 + K/κ) exp{−K/κ}
(1)

whereκ is directly connected with the population in the mo-
mentt, i.e. 〈mt〉 = 2κ, andΘ(−r) is the Heaviside func-
tion2.

The new map for the population growth is then ob-
tained by averagingRt over the normalized distribution
P (∆mt, mt) ≡ L(∆mt|mt)p(mt). SettingV = −[∆mt −
f(mt)]

2/2 andf(mt) = r(1 − mt/K)mt, the intrinsic rate
of increasing is now given by

〈Rt〉 = r −
r 〈Nt〉

K
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(2)

Once given〈Rt〉, not matter how it was calculated, the
variation on population is estimated by the product of〈Rt〉
by the population today:∆Nt = 〈Rt〉Nt, which produces
〈∆Nt〉 = 〈Rt〉 〈Nt〉.

3. DISCUSSION

For r > 0 the equation (2) becomes similar to the Ver-
hulst model and the averaged population goes to the limit of
the carrying capacity in finite time. In Fig.(1) a numerical
implementation with bothr > 0 andr < 0 illustrates this
point.

In the opposite scenario, with a negative growth rate, the
population goes to extinction. Of course, the existence time
of the population depends on the initial size〈N0〉, on the
growth rate and on the carrying capacity [5]. To illustrate
these, consider a simple example: the arriving of a large em-
igrate population in an population subject to an epidemic.

2Θ(−r) = 1 for r < 0 and zero forr > 0

The first thing to observe is the possibility of two growth
rates, one of the native population and another of the foreign
one. But, to avoid unnecessary complications it is assumed
that the effective grown ratēr is negative. If the sum of the
native plus the foreign population is greater than the carrying
capacity, then the total growth rate has to be less thanr̄ —
representing the death due to the disease plus the limitations
due to the lack of supplies. Besides, once the lack of supplies
will affect the sick individuals more than it would affect the
healthy ones, it is expected a total reduction of rate greater
than the sum of the rate due the disease plus the rate due to
the lack of supplies whenr > 0. Here the reduction rate is
defined as being the absolute value of the growth rate. In the
new model (2), if〈Nt〉 ≫ K andr < 0 we have〈Rt〉 →
r−r 〈Nt〉 (1−exp{−2K/ 〈Nt〉})/K. Recalling that we are
consideringr = r̄ < 0, we will have〈Rt〉 < 0. Besides,
in the proposed limit−〈Nt〉 (1 − exp{−2K/ 〈Nt〉})/K →
1 + 2 exp{−2K/ 〈Nt〉}, i.e. 〈Rt〉 → 3r̄. This means that, in
the lack of supplies, the death due to diseases is greater than
when there is abundance.

Naturally, the major contribution to the reduction rate
should comes fromr when total population is far from the
carrying capacity (less thanK) — once it would have abun-
dance. This can be observed in the limit〈Nt〉 ≪ K, that
produces〈Rt〉 → r(1 − 〈Nt〉 /K), i.e. the old model is re-
covered.

This simple example indicates that the present method
can be used as a promising tool to improve models, which
can be verified in others dynamical population models [1].
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