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Abstract: The small amplitude Ginzburg-Landau 
equation, which appropriately describes fields with non-
local coupling is studied numerically in the Benjamin-Feir 
unstable limit. We have found that by changing the 
reduced system size and its coupling, different behaviors 
emerge, particularly a metastable one on which small 
perturbations make the system come back to its chaotic 
saddle.    
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1. INTRODUCTION 
 

For a qualitative understanding of complex dynamics 
of real systems, simplified mathematical models of 
coupled oscillators have proved to be extremely useful. 
Amongst them, coupled limit-cycle oscillators with high 
degrees of freedom are known to represent a wide variety 
of systems. The present study aims at these, by making a 
non-local coupling, on which the coupling strength is not 
uniform throughout the network. 

As a prototypical equation, we study the Ginzburg-
Landau network, which naturally arises in large 
assemblies of oscillatory elements with indirect 
coupling[1], mediated by a diffusive scalar field, 
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where which Wj is a complex variable associated with the 
jth oscillator, C2 is a real constant, and C normalization 
constant. In addition to the coupling strength k, we have 
the reduced system size L=γNδ; δ only scales the length 
of the system. 

This equation has been studied under the stability 
condition, on which turbulent patterns were discovered[2]. 
Chaotic behavior has also been discovered[3] when L is 
increased, making the system more locally coupled. 
However, its behavior when L is decreased, towards the 

globally coupled regime has been poorly understood. 
We have studied the system for L=1.0, and found 

that depending on its coupling strength, distinguish 
patterns appear. For weak coupling, the real and imaginary 
parts of the oscillators are frequency synchronized, 
oscillating periodically and with the same amplitude, 
which leads to a constant modulus for the oscillators. By 
increasing k, the system starts presenting longer chaotic 
transients, until they finally become perennial, which 
indicates a crisis.   

If L continues to be increased, during a short interval, 
the oscillators become once more synchronized in 
frequency with a periodically oscillating modulus. 
Moreover, they present a metastable behavior, on which a 
great number of asymptotic orbits, with different 
frequencies and amplitudes occur. At this moment, small 
perturbations to one or more oscillators make the system 
return to its chaotic saddle preventing it from 
synchronizing.  

We have also found a relation between the reduced 
system size and the coupling strength, making it possible 
to compensate a weak coupling with a smaller γ. 

 
2. PURPOSE 
 

Our aim is to study the Ginzburg-Landau equation 
through numerical simulations and determine the different 
behaviors that emerge by varying its parameters. Such 
behavior can be used as a prototype and can be useful for 
a large class of systems. 

We also intend to understand how pinning one or 
more oscillators may desynchronize the system by 
keeping it in the chaotic saddle. 

 
3. RESULTS AND DISCUSSION 

 
We firstly refer to the first transition for L=1 which 

happens at a critical value of the coupling strength (as it is 
shown on the scheme below), and it is probably caused by 
a crisis in the system, given the power-law relation 
between the average transient time and the coupling 
strength (figure 1b). 

 
 
 
 



 

 

 
Figure 1 a: Different behaviors as a function of k. 

Figure 1b: Relation between the transient time and the 
critical value of k. 

 
In order to characterize the different kinds of the 

asymptotic orbits, the frequency dispersion has also been 
determined numerically; 

 

 
Figure 2: Frequency dispersion calculated form the modulus 

of Wj. 
 

An instantaneous frequency has been calculated by 
using the time between two consecutive maxima on the 
time evolution of |Wj| by using these, a time averaged 
frequency was calculated for each oscillator and the 
dispersion from the spatial average was determined for 
the integration with sixty four oscillators. 

On the metastable limit, we have found that by 
pinning one site, we send the entire system to a 

desynchronized state, on the chaotic saddle. The following 
graphic presents the time spent on a chaotic transient after 
a perturbation if given to one of the oscillators. 

 
Figure 3: Transient time versus amplitude of 

perturbation for fixed L  and k. 
 

It can be seen from it that small perturbations are 
incapable of causing desynchronization, while from an 
upper limit, the amplitude of perturbation no longer alters 
the transient time.  

We have also found that by increasing the number of 
perturbed sites or the frequency of perturbations, it is 
possible to obtain a similar result with lower amplitude of 
perturbation. 

 
4. CONCLUSIONS 

 
It has been shown that the Ginzburg-Landau 

equation presents a wide variety of behaviors, witch 
depend strongly on the reduced system size and on the 
coupling strength.  

Particularly, for a certain interval of k, when the 
metastability appears, the network could be used to model 
applications where synchronization should be avoided 
such that  manners to prevent it can improve the behavior 
of the system. 

 
References 

 
[1]  Y. Kuramoto, “Phase and Center Manifold Reductions 

for Large Populations of Coupled Oscillators with 
Application to Non-Locally Coupled Systems.” 
International Journal of Bifurcation and Chaos, Vol.7 
No 4 (1997) 789-805.  
 

[2] D. Battogtokh Y. Kuramoto, “Turbulence of Non-
Locally Coupled Oscillators in the Benjamin-Feir 
Stable Regime.” Physical Review E, Vol. 61, No 3 
(2000) 3227-3229. 

 
[3] Y. Kuramoto, H. Nakao, “Power-law Spatial 

Correlations and the Onset of Individual Motions in 
Self-Oscillatory Media with Non-Local Coupling.”  
Physica D (1997) 294-313. 


