
INPE – National Institute for Space Research 
São José dos Campos – SP – Brazil – July 26-30, 2010 

 
Robust Tori in a Double-Waved Hamiltonian Model 

 
Caroline G.. L. Martins1, F. A. Marcus2, I. L. Caldas2, R. Egydio de Carvalho1 

 
1Univ Estadual Paulista-UNESP; Instituto de Geociências e Ciências Exatas; Departamento de Estatística, Matemática Aplicada e 

Computação, Av. 24A, 1515, 13506-900 Rio Claro , SP, Brazil, carolinegameiro@gmail.com, regydio@rc.unesp.br 
2Universidade de São Paulo; Instituto de Física 05315-970 São Paulo, SP, Brazil, albertus@if.usp.br, ibere@if.usp.br 

 
 
keywords: Robust tori, drift waves, radial transport. 
 

A Hamiltonian system perturbed by two waves with 
particular wave numbers can present robust tori, barriers 
created by the vanishing of the perturbed Hamiltonian at 
some defined positions. When robust tori exist, any 
trajectory in phase space passing close to them is blocked 
by emergent invariant curves that prevent the chaotic 
transport. Our results indicate that the considered 
particular solution for the two waves Hamiltonian model 
shows plenty robust tori blocking radial transport. 

The effect of transport barriers in Hamiltonian 
systems is a subject of global interest in different branches 
of physics [1, 2, 3]. W. Horton introduced one type of 
Hamiltonian model with two waves, relevant for particle 
transport in plasma physics [4]. The Hamiltonian 
describes drift waves, originated by particles drift 
proportional to BE

��
∧  in nonuniform plasmas, 

propagating in a magnetic toroidal and an electric radial 
fields. The model has been explored to describe the onset 
of stochasticity for test particles driven by these drift 
waves in tokamaks. The model has been applied in many 
works as to investigate the influence of the equilibrium 
electric and magnetic fields on the radial transport as to 
analyze experimental results [5, 6 ,7]. 

We observed that this model could present infinite 
robust tori (RT) which correspond to dynamical barriers 
that may appear in Hamiltonian systems [8, 9, 10, 11]. In 
this work, we start with a Hamiltonian with only one 
wave in order to emphasize the abundance of RT and next 
with the addition of other wave these RT could be broken 
giving rise to anomalous radial transport. Our goal in this 
work is to present a particular solution for this wave 
Hamiltonian model that prevents the breaking of the RT, 
even if we add as many waves as we want in the 
perturbation. This is an important fact since the creation 
of barriers in Hamiltonian systems has been considered an 
important subject in several areas of physics especially in 
plasma confinement in tokamaks [2, 7, 12, 13]. 

When the Hamiltonian cited above presents only one 
wave, the system is globally integrable. However, when 
we consider two waves for the system, the integrability 
will be broken and chaos will be observed around the 
hyperbolic fixed points. We used a nonperturbed 

Hamiltonian of the flowing kind: xxH  )(0 α= , then we 

have: 
 

))(cos()sin(

)cos()sin()(),,(

222

1111

utykxkA

ykxkAxutyxH

yx

yx

−

++−= α
       (1) 

 
We can observe that when )sin(0)sin( 21 xkxk xx ==  the 

perturbation vanishes. Looking at the new equations of 
motion: 
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We note that the motion in the x-direction can disappear if 
the wave numbers obey the condition 21 . xx kmk = . If m 
is an integer number, RT will appear as in the integrable 
case, but if m is a non-integer number, only fewer RT will 
survive. In the former case there will be lines with 

x=constant in the positions 
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==  for all n1 and 

n2 integers and RT will continue intact even with the 
addition of the second wave what allows us to expect to 
block the radial transport. 

We present in Fig. 1 two different situations for the 
waves model of Eq. (1). We see in Fig. 1(a) the Poincaré 
map for the case 21 . xx kmk ≠ , known in the literature [4, 
5, 6, 7].  The addition of the second wave breaks the 
integrability of the system and chaos may fills the phase 
space. The particles can move along the radial and 
poloidal coordinates making a chaotic web, as is shown in 
Fig. 1(a). In order to understand the dynamics we choose 
different colors for the initial conditions representing 
different regions. The blue, green, and red colors are 
mixed in Fig. 1(a) showing that there are not barriers for 
the radial transport developed by the particles. On the 
other hand, in Fig. 1(b) we show the Poincaré map for the 
particular case presented in this paper 21 . xx kmk =  for m 
an integer. RT (black lines) are intact even after the 



addition of the second wave and there is not mixing of the 
colors along the phase space. As was expected RT block 
the radial diffusion. 

(a)  

(b)  
 

Figure 1 - Poincaré maps for the Hamiltonian with two 
waves Eq. (1) (a) for 21 . xx kmk ≠  (without RT) (b) for 

21 . xx kmk = with m integer (with RT in black color). 
 

Previous studies [2, 3] have showed the importance 
of decreasing the radial transport induced by drift waves 
to improve the plasma confinement in tokamaks. It is also 
reported that similar Hamiltonians to the one presented in 
this paper have been used to study transport but only few 
works were dedicated to control chaos in these systems 
[5, 14]. Even though there is not an effective way to 
control the wave numbers of the drift waves in tokamaks 
neither to measure the radial wave number kxn, our 
contribution shows a direction to block the radial 
transport with the particular solution presented here for 
the two wave Hamiltonian model. 
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