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In this work, we numerically studied the dynamics of 
the Watt governor system model. The Watt governor is a 
device that automatically controls the speed of an engine 
[1]. As commented in Ref. [1], that system is dating to 
1788, and landmarks for the study of the local stability of 
the Watt governor system are the works of Maxwell [2] 
and Vyshnegradskii [3]. The Watt governor system model 
is described by a set of three coupled first-order 
differential equations, which can be derived from 
Newton’s Second Law of Motion [1]. In Eqs. (1) below, 
we show the model with normalized variables and 
parameters. 
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In Eqs. (1), 0>α , 10 << β , and 0>ε  are 

parameters. A complete analytical bifurcation study, 
regarding codimension one, two, and three Hopf 
bifurcations, was done in Ref. [1] and references therein. 
In this sense, the aim of our work is to extend those 
studies, carrying out a numerical study of the global 
bifurcations of the Watt governor system, modeled by 
Eqs. (1). 
 

The numerical study carried out in this work consists 
of to calculate the largest Lyapunov exponent, 
numerically solving the Eqs. (1) with the fourth-order 
Runge-Kutta method with time step equal to 210− , for 
each pair of parameters ( )εα , , with 8.0=β . The range of 
parameter values was discretized in a mesh of 500500×  
points equally spaced. We identify for each largest 
Lyapunov exponent a color, varying continuously from 
black (zero exponent), passing through yellow (positive 
exponent), up to red (positive exponent). 

Fig. 1 shows the two-dimensional parameter space 
for the parameters ( )εα ,  of Eqs. (1). Black regions 
represent periodic behaviors, and the yellowish and 
reddish regions represent chaotic behaviors. Inside the 
chaotic regions, we can observe the existence of immersed 
periodic structures, represented by the black regions inside 
of the yellowish and reddish regions. 

 
Fig. 2 shows the amplification of the white box in 

Fig. 1. Fig. 3 shows the attractors located in the marked 
structures of Fig. 2. All the attractors are in periodic 
regions, black colors in Fig. 2. In Fig. 3, we observe 
attractors with periodic behaviors (limit cycles), for 
example, attractors with period-12 (attractor-a), with 
period-6 (attractor-b), with period-8 (attractor-c), with 
period-16 (attractor-d), with period-20 (attractor-e), and 
with period-10 (attractor-f). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Global view of the ( )εα ,  parameter space of Eqs. (1). 
Black color indicates periodic behavior, yellow and red ones indicate 
chaotic behavior. The white regions indicate divergence of Eqs. (1). 
The white box represents the amplification region shown in Fig. 2. 

 
Periodic structures embedded in chaotic regions were 

reported in recent works [4-6], where the dynamical 
systems are modeled by a set of first-order differential 
equations. In those works, the observed periodic structures 
organize themselves in bifurcation cascades, called 
period-adding cascades, that accumulate in periodic 
boundaries. That behavior seems to be a common feature 
presented in those systems. Indeed, in the Watt governor 
model, Eqs. (1), we observe a new sequence of 



accumulation in a region of the parameter space, the white 
box in Fig. 1. The amplification of that box, shown in Fig. 
2, presents a sequence of pairs of periodic structures, 
where the first pair, i.e., structures ‘a’ and ‘b’, has a 
period-half cascade (period-12 to period-6). The second 
pair, i.e., structures ‘c’ and ‘d’, has a period-doubling 
cascade (period-8 to period-16), and the third pair, i.e., 
structures ‘e’ and ‘f’, has a period-half cascade (period-20 
to period-10). That alternating sequence of pairs of 
periodic structures continues until the periodic boundary, 
which is a large periodic region with period-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – Amplification of the white box in Fig. 1. Black regions are 
periodic behaviors, and yellow ones are chaotic behavior. The letters 
indicate the positions of the attractors shown in Fig. 3. The black 
region in the left side is a periodic boundary with period-4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Periodic attractors of the selected structures in Fig. 2. In 
the right side below of each attractor we show the period of the limit 
cycles. 
 

A two-dimensional parameter space, using the 
largest Lyapunov exponent codified in a continuous range 
of colors, for the Watt governor system model was 
reported. We observed a diversity of self-similar periodic 
structures immersed in the chaotic regions. A new 
sequence of bifurcation cascade was observed, with pairs 
of periodic structures alternating from period-half to 
period-doubling bifurcation and accumulating in a 
periodic boundary.  
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