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In his seminal work, Cournot [1, Chapter 7] 

constructed the theory of oligopoly in a mathematical 

framework. His model captured the strategic interactions 

among a small number of firms in a market for a single 
homogeneous commodity; each firm tries to maximize 

her profit by taking the output choices of the other firms 

as given. The equilibrium point in his model is defined as 

the intersection of the reaction functions. His equilibrium 

notion is in essence identical with the Nash equilibrium 

concept. In this sense Cournot anticipated Nash [2] more 

than a century ago. There is no disagreement on the point 

that Cournot's oligopoly model is the classic instance of a 

non-cooperative game in economics.  

 

The purpose of the present paper is to investigate the 

stability of the steady state for two dynamic adjustment 
systems. In the first model, I deal with a system of 

ordinary differential equations. In the second model, I 

examine a system of delay differential equations, which is 

an extended version of the first model.  

    

I consider a duopoly situation: the strategic 

interactions between firm 1 and firm 2. Let the market 

price be given by   

 

         ,      (1) 

 

where  is the price level and xi is the output level of 
firm i. Furthermore we assume that the cost function of 

firm i is linear: 
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    The profit function for firm i is defined as 
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and the profit maximizing levels of output are given by  
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    In studying the adjustment process, I assume that 

each firm controls the growth rate of its output according 

to the difference between its profit maximizing level and 
its actual level of output:  

 

,      (5a) 

.      (5b) 

 

This adjustment process guarantees the global 

stability of the unique steady state. The proof is 

established by using Lyapunov's second method.   

However, what has to be noticed is that time lags 

inherent in the adjustment process are unavoidable in the 

real world. To analyze the problem of time lags, I consider 
the following system of delay differential equations: 

 

,  (6a) 
,  (6b)   

  

with the delayed arguments, li and τi>0.  

 
This model is identical with a model developed by 

Shibata and Saito [3]. They examined the population 

dynamics of two species with fixed time lags and 

concluded that the system could display strange attractors 

for appropriate parameter values by means of numerical 

simulation. Thus, their results apply to the adjustment 

system (6).  

 

Figure 1 summarizes one of main results in this 

paper: we can observe the emergence of a strange attractor 

in the adjustment system of a duopoly model. Note that 

the strange attractor is depicted as a projection onto the (ln 
x1, ln x2 ) plane. The trajectory of the strange attractor 

moves in a clockwise direction. In order to convince the 

exact evidence for chaos, we examine the Lyapunov 

characteristic exponents. Any system containing at least 

one positive Lyapunov characteristic exponent is said to 

be chaotic since it has sensitive dependence on initial 

conditions. In fact, we obtain the result that the largest 

Lyapunov exponent is 1.42. This outcome therefore 

suggests the existence of chaos in our numerical example. 
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http://maru.bonyari.jp/texclip/texclip.php?s=/[C_i (x_i) = c_i x_i, /,/, c_i>0/]
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http://maru.bonyari.jp/texclip/texclip.php?s=/[x_1 = R_1 (x_2) = -/frac{1}{2}x_2 + /frac{a-c_1}{2b} /]
http://maru.bonyari.jp/texclip/texclip.php?s=/[x_2 = R_2 (x_1) = -/frac{1}{2}x_1 + /frac{a-c_2}{2b}  /]
http://maru.bonyari.jp/texclip/texclip.php?s=/[{/dot x_1} &= /alpha_1 (R_1 (x_2)-x_1)x_1, /,/, /alpha_1 >0/]
http://maru.bonyari.jp/texclip/texclip.php?s=/[{/dot x_2} &= /alpha_2 (R_2 (x_1)-x_2)x_2, /,/, /alpha_2 >0/]
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Figure 1 – Strange attractor 
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