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Abstract: Stabilization of a chaotic system in one of its 

unstable equilibrium point by applying small 

perturbations is studied. Feedback control, Lyapunov 

stability and ergodicity are combined to improve 

performance. 
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1. INTRODUCTION 
 

Although several authors resorted to the well 

developed machinery of Modern Control Theory to solve 

control chaos problems, it is known that they often did not 

take full account of the special aspects of chaotic motion 

neither of achieving improved performance by applying 

only small perturbations on some accessible system 

parameter. For example, with the objective of suppressing 

chaotic behaviour, [1], [2], [3] and [4] explored the linear 

feedback control while [5] dealt with a controller based 

on a PI regulator control. However, these approaches only 

take care of local stabilization. 

This work concentrates on Chen system but its ideas 

are straightful applicable to other chaotic systems like 

Lorenz, Chua, Rossler etc. Our purpose is to stabilize the 

system in one of its (unstable) equilibrium by using linear 

feedback control. Improvement of system performance is 

dealt with by exploiting the ergodicity of the original 

dynamics and using Lyapunov stability results for control 

design ([6]). 

 

2. PURPOSE AND METHOD 
 

Let us assume that we have a chaotic dynamical 

system determined by: ( )X F X=ɺ  and that E is one of 

its unstable equilibrium point embedded in its chaotic 

attractor. 

Our aim is controlling chaos by applying feedback 

control. For this, we will construct a linear feedback 

control, depending on a gain parameter k, to stabilize the 

system in the equilibrium E. The following facts will be 

of relevance: i) due to ergodicity, for the free system, 

(almost) every trajectory initialized in the strange attractor 

reaches a chosen E neighbourhood, ( , )B E δ ; ii) fixed k 

such that locally asymptotic convergence is guaranteed, 

the corresponding region of attraction kΩ  of the 

controlled system may be estimated. We look for a control 

law such that ( , )
k

B E δ ⊂ Ω  and which remains 

bounded by a desired fixed bound. The control strategy 

consists of making the free system run till it reaches the 

neighbourhood ( , )B E δ . Once the trajectory reaches it, 

the control is activated. Note that once the trajectory 

enters 
kΩ , it will never leave it, and so the feedback 

control will remain under the desired bound. 

Chen dynamical system is determined by: 
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being x1, x2 and x3, the state variables and a, b, and c, 

positive real constants. For a=35, b=3 and c=28, it has a 

chaotic attractor and its unstable equilibrium points are: 

1 (0, 0, 0)E = , 
2 ( 63, 63,21)E =  and 

3 (- 63,- 63,21)E = . 

Let E=E2. As in [1], we assume that all the state 

variables are observable and that each system equation 

may be affected by an additive control, i.e. 
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Put: 
1 1( 63)u k x= − − , 

2 2( 63)u k x= − −  and 

3 3( 21)u k x= − − . 

By mean of Lyapunov function construction ([6]), we 

estimate the region of attraction of system (2) as 
k

Ω , an 

ellipsoid centered in E.  

To state the strategy we must choose k that verifies: 
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being U the desired fixed control bound. 

As  
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where ( )Ms k  is the length of the ellipsoid mayor axis, 

(3) is verified by k such that  

( )Mk s k U⋅ ≤ .                                   (5) 

Due to numerical experience, we claim that every 

sphere ( , )B E δ  with 0.82δ > ∆ =  will be visited by 

any trajectory of system (1) at any time. On the other 

hand, convergence is guaranteed if ( , ) kB E δ ⊂ Ω  which 

is valid if ( )ms kδ ≤ , the length of the ellipsoid minor 

axis. So, we need to choose δ  such that  

                   ( )ms kδ∆ ≤ ≤ .                             (6) 

Hence, let us fix k and δ  according to (5) and (6). 

The algorithm consists of two stages. In the first, the 

system runs free (control no activated). Let tf the first time 

at which its trajectory reaches ( , )B E δ . The second stage 

begins at time t=tf  at which the control is activated. Note 

that differs from the OGY method ([7]) in that the control 

is kept activated for all t>tf . 
 

3. RESULTS AND EXTENSION 

 
We emphasize that under the stated requirements, 

trajectories convergence and U-bounded controls are 

formally proved, for (almost) initial conditions in the 

strange attractor. Note that smaller δ  is, the smaller k 

may be chosen and hence, the control effort may be 

reduced. However, a great reduction on δ will probably 

translate into a dramatic increase of the waiting time (first 

stage time). Besides, in general, a too small k delays too 

much convergence in the second stage. Therefore, 

parameters values will be chosen from a compromise 

between control effort, and total convergence time. 

We claim the conservative feature of our estimation 

by mean of an example. According to theoretical results, 

for the choice 2δ =  and k=30, convergence is 

guaranteed and 
1 2 3( ( ), ( ), ( )) 185.7u t u t u t ≤  is 

predicted. Lack of space does not allow us to show 

graphically the control performance but it is worth to 

comment that taking (-20,-20,30) as initial condition, it is 

seen that the control is around 58. 

We wonder if this methodology applies when not all 

states are observable. Suppose that we have system (1) 

but only the output y is at our disposal, being y=CX. The 

objective is to make the output converge to yE=CE. We 

implement a two stages-algorithm as in the complete 

observability case, save that: i) the criteria for control 

activation is 
E

y y δ− < , ii) the condition for control 

activation must be verified at every time. This is because 

in this case, we do not have estimated region of attraction. 

In spite of this limitation, we obtain experimental 

evidence of the algorithm success. Let us show it through 

the next example. The output of system (2) is determined 

by C=(0,1,0). The linear feedback control is: u1=0,     

u2=- k(y-yE) and u3=0 and the initial state is (5,-15,40). 

The parameters values are chosen: 2δ =  and k=10 so we 

predict 
1 2 3( ( ), ( ), ( )) 20.u t u t u t ≤  Convergence is 

verified through simulation. In Figure 1 the corresponding 

output and controls are displayed. 
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Figure 1 –Output and control 

 

4. DISCUSSION AND CONCLUSIONS 
 
Chen system has been stabilized while considering 

fundamentals on controlling chaos so making progress 

with respect to some previous works ([1], [2], [3], or [4]). 

As in OGY method, the on-line implementation only 

requires data on system linearization. But, for control 

design, extra system information is needed (for estimation 
of region of attraction) to choose control parameters 

which guarantee convergence. Then, fixed these values, 

not only convergence but also no “kicking”' of the 

trajectory out of the neighbourhood of the equilibrium 

point is assured. On the other hand, simulated results 

show us that our theoretical estimation is too conservative. 
This drawback will be object of future investigation as 

well as the extension of these ideas to other plausible 

situations like stabilization of periodic orbits, 

controllability restrictions, system affected by noise, etc, 

We have also considered the case of uncompleted 

observability as in [5]. Bounded controls (under the 

desired bound) have been achieved by our approach. The 

theoretical proof of convergence or any other property of 

the control strategy promises interesting research. 
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