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1. INTRODUCTION

When dealing with the solution of conservative nonlin-
ear differential equations, several problems such as energy
loss and symmetry break can occur. In order to avoid such
problems as much as possible, there are many numerical in-
tegration methods available in literature [1]. Although the
primary objective of these methods is the solution itself, a
possible by-product is a difference equation that hopefully
reproduces the same behavior as the one generated by the
original differential equations.

In [2] Mickens proposes one such a discretization scheme.
The authors of [3, 4] successfully obtain discretized models
for a dissipative system using this method. The models found
are topologically equivalent to the original continuous sys-
tem, except for a small displacement in the parameter space.
However, for conservative systems, [5] shows that the sym-
metry is not conserved and numerical instabilities may occur
when the discretization step increases.

Monaco e Normand-Cyrot propose a different discretiza-
tion scheme in [6], which was studied in [7] in the context of
the behavior of chaotic dynamical systems. The purpuse of
this work is to find valid discretized models, using this dis-
cretization scheme, for the Hénon-Heiles system, conserving
the energy and symmetry of the solution.

2. THE HÉNON-HEILES SYSTEM

The Hénon-Heiles system is a well known nonlinear con-
servative system and widely studied [1, 5]. It can be de-
scribed by four ordinary differential equations, as follows:

ẋ = u
ẏ = v
u̇ = −x− 2x y
v̇ = −x2 + y2 − y

(1)

The initial condition (x0 = 0.000, y0 = 0.670, u0 =
0.093, v0 = 0.000), as used in [5], results in the energy
equal to H = 0.128546999, leading to a chaotic behavior.
The Poincaré section under such condition is shown in Fig-

ure 1a. Symmetry, a feature of conservative systems, occurs
for vn = 0.

For the variable x, Fourier analysis shows that the max-
imum frequency is fmax ≈ 0.75Hz. Therefore, the max-
imum discretization step must be less than 0.67s to satisfy
the Nyquist criteria. As long as the Nyquist criteria is satis-
fied, numerical instabilities are avoided and discretized mod-
els generate solutions which are equivalent to the one of the
original system except for a small displacement in the param-
eter space [3–5].

3. MONACO AND NORMAND-CYROT DIS-
CRETIZATION SCHEME

Consider the dynamical system:

ẋ = f (x) (2)

where x = (x1, . . . , xm) ∈ Rm are state variables, f(. ) are
analytic functions of appropriate dimentions. The derivative
of x with respect to time is denoted by ẋ.

The discrete model of eq (2) is given by:

xk+1 = g (xk, h) (3)

where xk ∈ Rm are dynamic variables at time t = t0 + kh,
and h is the discretization step.

In [5, 7] it is shown that the discretization, originally
proposed by Monaco e Normand-Cyrot [6], can be accom-
plished by the Lie exponential expansion of eq. (2), as fol-
lows:

xk+1 = xk +
η∑

n=1

hn

n!
Lnf (xk) (4)

where η is the expansion order. The Lie derivative is given
by:

Lf (xk) =
m∑
j=1

fj
∂x
∂xj

(5)

where fj represents the j− th component in the vector field.
Higher derivative orders can be calculated recursively by:

Lnf (xk) = Lf

(
Ln−1
f (xk)

)
(6)

Expansion order of eq. (4) should be truncated to avoid
an excessive amount of terms, making computational simu-
lations unfeasible.



4. RESULTS: HÉNON-HEILES DISCRETIZATION

Poincaré section of the Hénon-Heiles discretized model
using the approach proposed by Mickens is shown in Figure
1b. Symmetry is not conserved, as already observed in [5].

Several discretized models were obtained using the
Monaco e Normand-Cyrot method. Each one was simulated
with different discretization steps. Low order models, such
as η = 3, were able to reproduce successfully the original
continuous Poincaré section for a small discretization step,
h < 0.02s, without breaking the conversation of the en-
ergy and the symmetry. As the discretization order increases,
greater discretization steps can be accomplished preserving
the original structure similarity. The 12th order discretized
model is able to successfully reproduce the attractor of the
original continuous system for large values of the discretiza-
tion step. Even though the Poincaré section for h = 0.67s,
Figure 1c, is smaller due to a slightly energy loss, and lacks
details due to border effect, it is still topologically equivalent
to the original one.

5. CONCLUSION

The discretization scheme proposed by Monaco and
Normand-Cyrot is a direct and simple method that provides
robust discretized models.

Higher order discretized models successfully reproduce
the Hénon-Heiles Poincaré section similar to the original
continuous one, even for large discretization steps. Energy
was nearly constant till the Nyquist frequency. The sym-
metry of the conservative system was preserved in all sim-
ulations, even for discretization steps above Nyquist crite-
ria. This was not observed in simulations with Mickens dis-
cretized models.

Low order discretized models can generate valid dynamic
models, but only for small discretization steps.

The increase in the discretized model order demands
more computational effort. One should consider studying the
necessary model approximation and the discretization step
used to generate a less computationally demanding model.
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