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In the Burgers model, the dynamics of the one 

dimensional velocity field, u ≡ u(x, t), is described by:  

  

                 ∂t u + u ∂x u = ν ∂x
2

  u + f,                              (1) 

 

where ν is the kinematical viscosity and f ≡ f(x,t) is the 

external force (usually, Gaussian and white noise in time). 

It is worth mentioning that Burgers turbulence [1] has 

been studied not only as a toy model which reproduces 

general turbulence properties of three-dimensional flows, 

such as intermittency. The multidimensional version of 

Burgers turbulence, for instance, plays an important role 

in the description of several realistic problems. Some 

interesting applications are related to nonlinear acoustics, 

cosmology, critical interface growth, traffic flow 

dynamics, etc. See, for instance, Ref. [2] for a 

comprehensive review.  Among the statistical properties 

of interest is the determination of the behavior of the 

velocity-difference probability distribution function (pdf) 

ρ(z), where 

 

                       z = u(x + ζ , t) - u(x – ζ ,t).                       (2) 

 

A remarkable feature of ρ(z) is that it can be regarded as a 

“probe” of intermittency, as indicated by non-gaussian 

fluctuations of local galilean-invariant observables in the 

high Reynolds number regime. The determination of the 

velocity-difference pdf tail asymptotics (|z| >> 1) 

 

                             ρ(z) ~ 1 / |z|
α
,                                      (3) 

 

has been a matter of intense debate leading to some 

controversy on the value of the exponent α. Regarding the 

left pdf tail, in one direction, a Fokker-Planck approach to 

the computation of velocity-difference pdfs, with closure 

given by an operator product expansion treatment of the 

dissipative anomaly was put forward by Polyakov [3]. 

This method provides a fine description of the pdf’s right 

tail, and yields a power law form for the left tail with 5/2 

≤ α ≤3 [4]. Extensive numerical simulations performed by 

Gotoh and Kraichnan [5] indicate that α = 3. At variance 

with such findings, an analytical study based on the 

velocity field profiles in space-time neighborhoods of 

shocks, the so-called preshock events, gives α = 7/2 [6]. In 

another direction, Boldyrev, Linde and Polyakov, in Ref. 

[7], have suggested that the left tail exponent is not 

universal, departing from α = 3 if flow realizations fail to 

satisfy a strong form of galilean invariance [7], which 

holds, by definition, if usual galilean invariance is 

observed in the bulk, regardless the boundary conditions 

at infinity. In rephrased form, the whole point of Ref. [7] 

is that finite-size effects which break strong galilean 

invariance would lock larger fluctuations of shock jumps 

and negative velocity derivatives, reducing intermittency. 

In [8], an analytical approach suitable to analyze the left 

tail of the velocity-difference pdf of Burgers turbulence 

driven by external stochastic forcing (Gaussian and white 

noise in time) was conceived. In [8], support was given to 

the conjecture that the left tail exponent is α = 3 when the 

strong form of galilean invariance is fulfilled in 

accordance with the previous analytical/numerical work of 

Ref. [7]. It was shown analytically, that the aymptotic 

form of ρ(z) is given by  

 

                                   ρ(z) ~ a / |z|
3
,                                 (4) 

 

where a is a prefactor that can be approximately computed 

in principle. Those issues were addressed with the help of 

the Martin-Siggia-Rose (MSR) field theory approach to 

classical mechanics [9]. This approach, in the same spirit 

of Feynman’s path integral description of quantum 

electrodynamics [10], allows us to rewrite the classical 

transition probability as a path integral with the weight 

given by the exponential of i (i
2
=-1) times an appropriate 

action S. This formulation provides an interesting stage 

for the use of standard non-perturbative quantum field 

theory (QFT) techniques, such as the instanton calculus 

[10], which among all possible trajectories contributing to 

the path integral weight selects the ones corresponding to 

extrema of the action. In this way, a functional Taylor 

expansion of the action S around solutions of the classical 

equations of motion (this terminology is borrowed from 

QFT), obtained by fixing the first functional variation of 

the action to zero, i.e. δS = 0, can be advanced (within the 

Feynman’s space-time approach to QFT, δS = 0, gives the 

classical equations of motion, i.e., the Euler-Lagrange 

equations). We note that although the time independent 

shock profiles considered in [8] can be used to find the 



correct power law profile of ρ(z), they are not very 

realistic. It has been assumed that shocks are time 

independent and totaly dissipated at the origin during the 

time interval L/U, where U is an estimate of the shock 

velocity jump and L is the mean shock-to-shock distance.  

In this work, as a refinement of the strategy of Ref. [8], 

we investigate how velocity-difference pdf are corrected 

from the consideration of more realistic time-dependent 

shock profiles (still analytically tractable), necessarily 

subject to external forcing fluctuations. We find, 

furthermore, under general circumstances, and up to 

second order in the stochastic force f, that the asymptotic 

scaling form of the velocity-difference pdf is stable, i.e. α 

= 3, although its prefactor  will depend on the particular 

structure of the ensemble of evolving shocks. 
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