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In recent years, computational and quantitative studies
of modeled neural networks are gaining momentum. Re-
searchers are putting to use powerful mathematical tools such
as analysis of non-linear dynamics, network theory and in-
formation theory. Neuroscientists have started to make the
crucial step of moving from the analysis of single cell dy-
namics to network dynamics, realizing that only studies of
macroscopic systems can help in revealing the mechanisms
responsible for the functions of the brain. Although some
progress has been made, in most cases networks were studied
using simplistic models that cannot give rise to the complex
biological reality. Experiments and theoretical work done by
our collaborators and us suggest that current models for neu-
ral networks are not detailed enough to produce an accurate
fit with biology.

Current research into modeling of neural networks fo-
cuses mainly on trying to understand what role do the under-
lying biological properties of the single neuron and synapse
in the dynamics of the single cell or of the network. An ex-
ample of such dynamics can be the natural oscillation gener-
ated in cortical neuron, which in many cases is gamma oscil-
lation (Add references here) or the firing pattern observed in
complex networks consisting of clusters of neurons. Since a
biological system is very complex, the idea is to try and un-
derstand which biological properties are most important for
the biological system to operate correctly. In addition, since
many biological processes are unknown, by simulating mod-
els based on the observed dynamics we can extrapolate po-
tentially new processes and elements which form an integral
part of the system. One of the most and important observed
behaviors of networks is synchronization. Figure 1 depicts a
raster plot of a recorded neural network from rats. The X axis
represents the time on a scale of 1/12 msec (the sampling fre-
quency of the recording is 12 KHz). The figure represents 1
recorded minute of activity. The Y axis represents the num-
ber of the recorded electrode. Each line on the figure rep-
resents one recorded electrode. We can clearly see from the

figure that the neurons of the network fire in a synchronized
manner. This may be an important property of network since
it is considered that synchronized networks perform a certain
task or a computation rather than just fire sporadically.

Figure 1 – Rat Neurons Raster Plot

In order to study the behavior of a network or a single
cell we require a dynamical model which will simulate its
behavior. In addition, we require the models to be biological,
which means that must resemble the recorded biological data
both qualitatively and quantitatively. One of the most widely
used models is the reduced Morris-Lecar model[1]:

CV̇ = −gCaMss(V )(V−VCa)−gKW (V−VK)−gL(V−VL)+Iext
(1)

Ẇ = (Wss(V ) −W )/(� cosh[(V − V3)/2V4]) (2)

Mss(V ) = (1 + tanh[(V − V1)/2V2])/2 (3)

Wss(V ) = (1 + tanh[(V − V3)/2V4])/2 (4)

The model depicts the ion current through ion the main
channels on the membrane of the neuron. This determines
its membrane potential, which can be said to be its output
signal. In order to analyze the model and adapt its parame-
ters in order to fit the observed biological behavior. Figure
2 depicts a phase plane portrait of the model when applying
a constant external current of Iext = [uA/cm2]. We can
clearly see the oscillating behavior and the fixed point which



is a stable spiral. We can conclude that if such external cur-
rent is applied the neuron would fire repeatedly with a fixed
frequency.

Figure 2 – Rat Neurons Raster Plot

However, in order to transmit this signal to other neurons
it must transmit it through it axons. In most studies of net-
works, due to computational complexity the axons are con-
sidered to be perfect conductors. At the end of the axons,
where it connects to other neurons it forms synapses. As
it is for the neurons, there are many dynamical models for
synapses. One of the most prevalent ones is the Tsodyks-
Uziel-Markram (TUM) synapse model[2]:

ẋ = z/�rec − ux�(t− tAP ) (5)

ẏ = −y/�I + ux�(t− tAP ) (6)

ż = y/�I − z/�rec (7)

u̇ = −u/�facil − U(1 − u)�(t− tAP ) (8)

The x,y,z variables depict the amount of synaptic re-
sources which are recovered, active and inactive respectively.
Thus, it must hold that z = x + y. u denotes the amount of
resources which are released when an incoming AP reaches
the synapse. When we model networks, a neuron can have
multiple inputs which it must integrate and which define its
underlying behavior.

As we have seen previously, one of the key features in
a neural networks is its ability to synchronize. Thus, we
need a quantitative measure of synchronization which can
be calculated from the raster plot. Such a model has been
developed in our group[3]. The synchronization between a
pair of neurons is defined to be the phase synchronization, or
the difference in phase, between the firing events of the two
neurons. The instantaneous phase of neuron j is denoted by
�j(t, n). The instantaneous difference in phase between two
neurons j,k is denoted by ��(j, k). The total phase synchro-
nization between the two neurons throughout the simulation
is denoted by S(j, k).

�j(t, n) = 2�n+ 2�(t− tj(n))/(tj(n+ 1) − tj(n)) (9)

Δ�(j, k) = �j(t, n) − �k(t,m) − 2�(n−m) (10)

S(j, k) =
∣∣∣〈eiΔ�(j,k)

〉
t

∣∣∣ (11)

We can see that this measure detects both the differences
in the phase between two firing events with the same index
and between events of different indices. In order to produce
a single value for the entire simulation, the phase difference
is averaged over he time span of the simulation. After calcu-
lating the phase differences between all neuron pairs, a phase
synchronization map is produced. It graphically depicts the
differences throughout the network. In order to correctly ar-
range the neurons in the map, a dendrogram clustering algo-
rithm is used. In order to test the applicability of our models,
we need our network of simulated neurons to reproduce this
ability. Figure 3 depicts a phase synchronization map of a
simulated neural network with two clusters. A warmer color
signifies higher synchronization.

Figure 3 – Phase Synchronization Map

We can clearly see the formation of the clusters in the
network. The clusters are highly synchronized inside them-
selves, when in between the synchronization is much weaker.

Our current work consists of developing more accurate
model parameters, adding more biological elements to the
network (such as electrical synapses) and developing models
for network evolution as they do in the brain. The network
evolution properties are speculated to be the biological basis
for learning and memory.
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