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OPTIMAL CONTROL IN NOISY CHAOTIC SYSTEMS
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It is well known that a large number of natural [1, 2]
and technological [3, 4] systems behave chaotically for some
ranges of their parameters. Ott, Grebogi and Yorke (OGY)
[5] illustrated not only that chaotic systems described by
maps may be controlled, but that the richness of possible be-
haviors in chaotic systems may be exploited to enhance the
performance of a dynamical system in a manner that would
not be possible had the system’s evolution not been chaotic.
Shortly thereafter, Ditto et. al. [6] reported a successful lab-
oratory implementation of the control strategy outlined in
Ref. [5], demonstrating that controlling chaos is not just a
theory, but is physically attainable as well [7]. Pyragas [8]
developed these ideas in continuous dynamical systems us-
ing a delayed feedback control strategy for unstable periodic
orbit (UPO) [9]. For our purpose, it is worth mentioning the
study of the effect of an external noise on the controlled sys-
tem [10], and the search for optimal control strategies using a
periodic driving [11], but in which the control strength does
not remain small.

In this work we continue along the lines set forth by Pyra-
gas [8]. We begin by describing a fairly simple method to es-
timate the Lyapunov spectrum of a known UPO. This method
will allow us to map the task of controlling the UPO to an
optimization problem, as suggested in Refs. [11] and [12].
We will use a driving term that is natural for these types of
systems, as suggested by Pyragas [8], and that can converge
to a small control effort, consistent with a given noise level.
Special attention is given to the problem of handling noise,
which can affect considerably the estimation of Lyapunov
exponents and the strength of the force required to keep the
orbit close to the UPO. This particular exponent estimation
method allows us to develop a cleaning strategy for the ex-
ponents based on singular value decomposition [13]. Un-
der these noisy conditions it becomes relevant to find opti-
mal control strategies that minimize the effect of noise on
the orbit close to the UPO. We illustrate these ideas with
Lorenz, Rossler, and the Van der Pol systems, that have a

single Lyapunov exponent with a positive real part, and a hy-
perchaotic system with two Lyapunov exponents with posi-
tive real parts [14].

Let us consider a nonlinear dynamical system described
by

~̇x = f(~x) , (1)

where ~x is a vector in Rd and f : Rd → Rd is a nonlinear and
at least C1 function. For this paper, controlling an UPO of
period τ in this system implies: (a) reducing the asymptotic
average distance to the UPO for a given τ ; and (b) converging
to an asymptotically small average control effort, consistent
with a given noise level. Following [12], we can define the
instantaneous distance of a trajectory to the UPO as

D2(~x, t) = |~x− ~x∗(t)|2

and we take the control as (1/2)A~∇xD2 ∼ A(~x − ~x∗(t)),
using an optimization analogy [13]. Hence, for this work we
will assume a feedback control scheme

~̇x = f(~x) + A(~x− ~x∗(t)) , (2)

where the control is taken as ~C(~x, t) = A(~x − ~x∗(t)). Let
us note that this is the form suggested by Pyragas [8].

We now describe a numerical method to compute the
spectrum λi using the linearization of the above problem.
There exists a fundamental matrix B(t) associated with the
linearized problem such that a given vector ~v(t) evolves as,

~v(t) = B(t)~v(0) , (3)

for any initial vector ~v(0), which requires that
B(0) = 1. Now let us take an arbitrary initial basis
{~v1(0), ~v2(0), . . . , ~vd(0)}, so that an arbitrary pertur-
bation vector ~η(0) around the UPO, can be written as
~η(0) =

∑d
j=1 cj~vj(0), where the set ~c = {c1, . . . , cd}

satisfies
∑d
j=1 cj = 1. Hence we need to determine the set

of coefficients that corresponds to ~ηi. The above expression
implies that

~η(τ) = B(τ)
d∑
j=1

cj~vj(0) =
d∑
j=1

cj~vj(τ) , (4)



where ~vj(t) can be found numerically. The above relations
can be rewritten in matrix form[

V(τ)V(0)−1 − eλτ1
]
~c = 0 , (5)

where V(t) is the known matrix {~v1(t), . . . , ~vd(t)}. Notice
that B(t) = V(t)V−1(0). Solving the eigensystem (5)
yields all the ~ηi vectors and their corresponding λi expo-
nents.

To handle noisy system, define H(~x0, τ) = |~x(τ)− ~x0|2,
which is the function to be minimized. Now we will resort to
singular value decomposition (SVD), that is generally used
in signal processing of images [13]. We start by constructing
the matrix

M i
k,j = xki (j∆t) ,

where ∆t = τ/Nt for some integer Nt. The SVD trans-
formation of M = VΣUT . The first column of U should
be proportional to the cleaned orbit, which can be rescaled
by xi(0). For a close neighborhood of the UPO, we repeat
this analysis for i = 1, . . . , d, from which we can obtain the
value of H(~x0, τ). Then we search for a local minimum of
H(~x0, τ) over ~x0 and τ [14].

The second step is to compute the Lyapunov exponents.
Since noise is present, standard estimation procedures will
give considerable fluctuations. Instead, we estimate finite
Lyapunov exponents from Eq. (2), by integrating numerically
an initially small, not necessarily infinitesimal, perturbation
~x(t) = ~x∗S(t) +~v(k)(t) from t = 0→ τ , where ~x∗S(t) comes
from the SVD procedure. Next we start all the trajectories
with |~v(k)(0)| = δ0. We will resort again to singular value
decomposition to clean the exponents. In order to compute
the matrix B(τ) = V(τ)V−1(0) we need to invert the ma-
trix V(0). We can take a non-square matrix of initial condi-
tions

V(0) = {~v1(t), . . . , ~vN (t)} ,

with N ≥ d, with d the dimension of the system. These N
initial conditions can be chosen at random, or taken from the
dynamics of the system each time the trajectory passes close
to the UPO, in the case of experiments. Even though V(0) is
a non-square matrix, we can compute its pseudo-inverse [13]
and estimate a square d × d matrix B(τ) = V(τ)V(0)−1.
As an example, we assume a control strategy based on a ma-
trix with the single non-null element A11 = α, the result is
shown in Fig. 1. For further discussion see [14].
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Figure 1 – Maximum exponent λmax calculated for the Rossler
system with intrinsic noise. (a) The value of λmax at αR = −1.1
as a function of δ0 using: the average of 40 sets of N = 3 initial
conditions (dotted line), the average of 12 sets of N = 10 initial
conditions (dashed line), and the result of 1 set of N = 120
initial conditions (thin line). The estimated value of λmax using
the infinitesimal approach is shown as the horizontal thick line.
(b) The estimated maximum exponent as a function of α using
the SVD cleaning procedure for the same sets as before. We take
σ = 0.1/

√
3 with ω = 100 Hz. For details see [14].
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