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The analysis of passive scalars is a powerful way to trace
the turbulence in hydrodynamical and magnetohydrodynam-
ical flows. When probing turbulent transport of passive
scalars, both Eulerian and Lagrangian tools can be employed.
In the Eulerian approach, for a given velocity field, one can
solve an advection–diffusion equation for the passive scalar
concentration, from which turbulent transport coefficients
can be computed. Also, instantaneous snapshots of tracer
and velocity fields can be used to extract coherent structures
such as eddies, convection cells, filaments and other struc-
tures that may act as transport barriers. Alternatively, in the
Lagrangian approach the dynamics of fluids is studied by fol-
lowing the trajectories of a large number of fluid elements or
tracer particles. The Lagrangian description has been gaining
increasing attention in the past decade and it has been sug-
gested that Lagrangian tools are more appropriate to identify
tracer patterns than their Eulerian counterparts, since they
don’t rely on single instantaneous snapshots of the velocity
field. By following particle trajectories, the spatiotemporal
evolution of the fluid is taken into account to extract trans-
port properties, including the detection of structures that are
smaller than the resolution of the velocity field.

This work presents the detection of transport barriers
called Lagrangian coherent structures in direct numerical
simulations of a 3–D magnetohydrodynamic (MHD) dy-
namo. An MHD dynamo is the process responsible for the
growth of an initially weak magnetic field in a magnetized
fluid due to the conversion of kinetic energy to magnetic en-
ergy. We focus on the change in transport and mixing prop-
erties of the flow when the system undergoes a transition
whereby a large–scale spatially coherent magnetic field loses
its stability due to change in the magnetic diffusivity η. The
transition results in a magnetic field with complex spatiotem-
poral dynamics.

We use the Pencil code (http://www.nordita.
org/software/pencil-code) to solve the continuity
equation for the gas density ρ, the momentum equation for

the velocity field u and the induction equation for the mag-
netic field B for an isothermal gas in a box with sides L = 2π
and periodic boundary conditions. An external driver given
by a periodic helical wave provides an energy injection at the
wave number k = 5. Following [1], a numerical resolution of
643 mesh points is chosen. We choose the magnetic diffusiv-
ity η as the control parameter and fix the kinematic viscosity
ν = 0.005, which in the absence of magnetic fields corre-
sponds to a spatiotemporally chaotic flow with the Reynolds
number Re ≈ 100.

The magnetic field is initialized with a small random per-
turbation and depending on the value of η, it can decay to
zero or grow until it saturates in a nonlinear dynamo regime.
For η = 0.01 the average magnetic energy is close to the
kinetic energy and there is a coherent large–scale By com-
ponent accompanied by small–scale turbulent fluctuations.
Figure 1 shows the patterns in By for four different times.
The large–scale field is robust and propagates in the vertical
direction. For η = 0.05 the coherent state becomes unsta-
ble and the magnetic field displays an intermittent switching
between coherent and incoherent large-scale structures (Fig.
2).

The magnetic field affects the velocity field due to the ac-
tion on the Lorentz force in the momentum equation. The
details of what happens with the velocity field and passive
scalars is best described in terms of Lagrangian coherent
structures, which are computed using the finite–time Lya-
punov exponents (FTLEs). The FTLEs quantify the average
rate of attraction and repulsion of two nearby particles pas-
sively advected by the flow, being a measure of Lagrangian
chaos. It was shown by Haller [2] that the FTLE field can
also be used to identify repelling and attracting material lines
that are time–dependent analogous to the stable and unsta-
ble manifolds of saddle points in dynamical systems the-
ory. These material lines form transport barriers in flows
with chaotic streamlines and are called Lagrangian coher-
ent structures (LCS). For a time-dependent velocity field, re-
gions of maximum material stretching generate local max-
imizing curves (ridges) in the FTLE field. Thus, repelling
material lines (finite-time stable manifolds) produce ridges
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Figure 1 – Magnetic field component By at η = 0.01.
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Figure 2 – Magnetic field component By at η = 0.05.

in the maximum FTLE field in the forward-time system and
attracting material lines (finite-time unstable manifolds) pro-
duce ridges in the backward-time system [2].

Figure 3 displays the forward–time (green) and
backward–time (red) maximum FTLE fields at x = 0
for η = 0.01 (upper panel) and η = 0.05 (lower panel).
Figure 3 was computed using 254 × 254 fiducial particles
uniformly distributed on the plane x = 0. Bright colors
correspond to large values of the maximum FTLE and dark
regions to low values. The ridges in the FTLE fields can be
clearly seen and represent the Lagrangian coherent struc-
tures, which form the Lagrangian “skeleton" of turbulence.
The higher complexity in the distribution of material lines
in the flow at η = 0.05 indicates that transport of passive
scalars is highly enhanced due to the frequent crossings
of attracting and repelling lines. The enhanced chaoticity

at η = 0.05 leads to stronger line stretching and field
amplification, and the “competition" between this effect and
destruction of magnetic flux due to high magnetic diffusion
seems to be the cause of the intermittent regime.

The Lagrangian coherent structures are a powerful tool to
trace the preferred pathways for passive scalars, detect trans-
port barriers and explore the chaotic mixing properties of the
flow. We believe LCS can be used in conjunction with clas-
sical tools to provide a better description of MHD turbulence
in space and fusion plasmas.
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Figure 3 – Lagrangian Coherent Structures at η = 0.01 (upper
panel) and η = 0.05 (lower panel).
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