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Abstract: We investigate a generalization of the logistic map
as xn+1 = 1 − axn ⊗qmap

xn (−1 ≤ xn ≤ 1, 0 < a ≤ 2)
where ⊗q stands for a generalization of the ordinary product
[Borges, E.P. Physica A 340, 95 (2004)]. The usual product
is recovered in the limit q → 1, and consequently the usual
logistic map is recovered. The tent map is also a particular
case at qmap → ∞. The generalization of this (and others)
algebraic operator has been widely used within nonextensive
statistical mechanics context. We focus the analysis at the
edge of chaos, particularly at the first critical point, that de-
pends on the value of qmap. Bifurcation diagrams, sensitiv-
ity to initial conditions, fractal dimension and rate of entropy
growth are evaluated at ac(qmap). Connections with nonex-
tensive statistical mechanics are explored.
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1. THE q-LOGISTIC MAP

Low-dimensional non-linear maps represent paradig-
matic models in the analysis of dynamic systems. The dis-
crete time evolution and the small number of relatively sim-
ple equations make their treatment easy, without losing the
richness of the behavior, exhibiting order, chaos and a well
defined transition between them.

Strongly chaotic systems are of special interest for sta-
tistical mechanics, once they feature well known character-
istics: exponential sensitivity to the initial conditions, expo-
nential relaxation to the equilibrium state, gaussian distribu-
tions.

In-between ordered systems (with negative Lyapunov ex-
ponent) and (strongly) chaotic systems (with positive Lya-
punov exponent), there are those with zero maximal Lya-
punov exponent. These systems are characterized by power-
law sensitivity to initial conditions, instead of the exponential
sensitivity, and thus are considered as weak chaotic systems.
This change in the dynamics may lead to break of ergodic-
ity, non exponential relaxation to equilibrium and non gaus-
sian distributions. These behaviors are usually expected to
be found in systems that are described by nonextensive sta-
tistical mechanics [1, 2]. Some low dimensional maps, e.g.
the logistic map, also exhibit weak chaoticity at the edge of
chaos, and hence the interest in studying them to better un-
derstand nonextensivity.

Power-law like sensitivity to initial conditions and power-
law like relaxation to the attractor (more precisely a q-
exponential law) have already been found in logistic-like
maps [3, 4]. q-exponential function (ex

q ≡ [1 + (1 −
q)x]1/(1−q)) appear within nonextensive statistical mechan-
ics and it generalizes the usual exponential function (recov-
ered as q → 1). It is asymptotically a power-law. Sensitivity
to initial conditions of the logistic map at the edge of chaos is
identified to a q-exponential, with a specific value of the pa-
rameter q, denoted as qsen. Relaxation of the logistic map to
the attractor at the edge of chaos also follows a q-exponential
behavior, with a different and specific value of the parame-
ter q, denoted as qrel. The relation between qsen ≤ 1 and
qrel ≥ 1 plays a central role in the foundations nonextensive
statistical mechanics. For completely chaotic systems, where
Boltzmann-Gibbs formalism applies, these values collapse to
qsen = qrel = 1 (See [2] for details).

Nonextensive statistical mechanics has lead to develop-
ments in many neighboring areas, including generalized al-
gebras [5, 6]. These works have introduced generalized alge-
braic operators, and here we are particularly interested in the
q-product, defined as

x⊗q y ≡ sign(x)sign(y)
[
|x|1−q + |y|1−q − 1

] 1
1−q

+
(1)

where [A]+ ≡ max{0, A}. If the limit q → 1 is taken, the
usual product (x⊗1 y = xy) is recovered.

Our work consists in generalizing the logistic map as

xn+1 = 1− axn ⊗qmap xn

= 1− a[2|x|1−q
n − 1]

1
1−q

+

(2)

(−1 ≤ xn ≤ 1, 0 < a ≤ 2). It is expected that values of
qsen and qrel depend on qmap. We numerically pursue these
dependencies, with the hope that these relations may shed
some light on the multiplicity of q values and how they are
related to each other.

The q-logistic map generalizes the usual logistic map for
qmap = 1, and also the tent map for q → +∞. At the limit
q → −∞, it becomes xn+1 = 1 − a. Figure 1 shows one
iteration of the map.

Figure 2 shows bifurcation diagrams for different values
of qmap. Windows of order inside chaos (where there is tan-



Figure 1 – xn+1 as a function of xn for the q-logistic map. The
usual parabolic behavior is recovered at qmap = 1. Tent map
is found at q → ∞. For qmap < 1, the cut-off condition in
the definition of the q-product introduces a discontinuity in the
map. For qmap → −∞, ∀x0 ∈ [−1, 1] leads to x1 = x2 =
· · · = xn = 1.

Figure 2 – Bifurcation diagram for different values of qmap (in-
dicated). Windows of order inside chaos vanishes as qmap →
2.

gent bifurcation) gets narrower and completely disappears at
qmap = 2. Complete chaos is preserved at a = 2, ∀qmap.

Figure 3 shows the parameter a for the first point of ac-
cumulation of bifurcations (ac) and the fractal dimension at
a = ac for some values of qmap (values found with box
counting method). We see that fractal dimension decreases
with increasing qmap.

Other properties, like sensitivity to initial conditions and
relaxation to the attractor, are under evaluation.
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