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Reconstruction and Predictability of Stochastic Processes
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In time-series analysis, complex systems can often be de-
scribed by Langevin equations [1], the parameters of which
can be extracted directly from the data [2]. This approach has
been applied successfully to a number of problems [3]. We
present here a set of procedures that permit an improved anal-
ysis of stochastic time series. The first set of methods allows
to extract the stochastic parameters and the noise amplitude
present in a Langevin type stochastic time series afflicted
with strong measurement noise [4]. The second set deals
with transformations of multivariate Langevin type stochas-
tic equations into a different set of variates, one of which dis-
plays reduced stochasticity, thus improving the predictability
of this component.

We first consider a univariate stochastic time series with
an underlying Langevin dynamics

dx

dt
= D1(x) +

√

D2(x)Γt, (1)

where Γt represents a Gaussianδ-correlated dynamical
noise. FunctionsD1(x) andD2(x) are the drift and diffusion
coefficients, or Kramers-Moyal (KM) coefficients, given as

Dn(x) =
1

n!
lim
τ→0

1

τ
Mn(x, τ) . (2)

As was first shown in [5], the conditional moments

Mn(x, τ) =< [x(t+ τ)− x(t)]n > |x(t)=x (3)

can be calculated directly from the time series.
If we assume that the measurement of the time series is

accompanied by an additional Gaussianδ-correlated mea-
surement noise, we obtain the measured time series of obser-
vationsy(t) = x(t) + σζ(t), whereσ denotes the amplitude
of the measurement noise.

The presence of measurement noise does not allow the
application of standard methods for the extraction of the KM
coefficients [2]. In the case of large amplitudes of mea-

surement noise, approximation procedures [6] for determin-
ing the stochastic coefficients and the noise amplitude break
down.

The procedure presented here is based on a first order ap-
proximation of the noisy KM coefficients. The measured ex-
pansion functions can then be compared to their calculated
counterparts derived from a quadratic Ansatz. The functional
distance between measured and calculated functions is then
minimized by an iterative Levenberg-Marquardt method [7].
As a result, a parameter free reconstruction of the Langevin
process and the measurement noise amplitude is obtained.

We also present results for the minimization of two-
dimensional Langevin-type equations:

dX1

dt
= h1( ~X, t) + g11( ~X, t)Γ1(t) + g12( ~X, t)Γ2(t) ,

dX2

dt
= h2( ~X, t) + g21( ~X, t)Γ1(t) + g22( ~X, t)Γ2(t) . (4)

The goal here is to find a transform~X ′ = F ( ~X) such that
stochasticity in one directioni = 1, 2 is minimized, in order
to increase the predictability of the time series. We high-
light the contrast between a previous approach [8], where
a proper functional was minimized by means of an Euler-
Lagrange approach, to a new minimization based on a poly-
nomial Ansatz for the Lagrange coefficients and the sub-
sequent minimization through a simulated annealing proce-
dure. The findings of this procedure is then compared to the
calculation of the eigenvectors ofgij in the system of coupled
Langevin Equations, Eq. (4).

The one-dimensional recovery approach for 1d Langevin
equations with strong measurement noise is tested by ap-
plying the method to a general nonOrnsteinUhlenbeck pro-
cess with the drift and diffusion coefficients being linear
and quadratic forms, i. e.D1(x) = d10 + d11x ,D2(x) =
d20 + d21x + d22x

2. The coefficients and the noise ampli-
tude are shown to be recovered correctly, see Fig. .

In the case where we want to reduce stochasticity in one
direction of the multidimensional case, Eq. (4), we focus on
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Figure 1 – Optimized parameter values and measurement noise
amplitude of a reconstructed Ornstein Uhlenbeck process as a
function of noise strengthσI.

a Hopf oscillator with dynamical noise,

dr

dt
= r(1− r2) + g11Γ1

dθ

dt
= 1 + r2 + g22Γ2 , (5)

which forg11 = g22 = 0 shows a limit cycle atr = 1 and an
unstable focus atr = 0.

Here, we consider a stochastic force which near the limit
cycle is much larger in the radial direction than in the angular
direction,g11(r) ≫ g22(r) , r → 1. For simplicity we set the
coefficients for the mixing of the stochastic forces in Eq. (4)
g12 = g21 = 0. Then, transforming the system from polar
coordinates to Cartesian coordinates, the new matrix{g′ij}
should yield locally (for each point(x1, x2)) two eigenval-
ues, one large with an eigenvector in the radial direction, and
another smaller one pointing perpendicularly to it. Figure
shows these two eigenvectors for a particular choice of func-
tions gij and for the two joint time-seriesx1 = r cos θ and
x2 = r sin θ. It is evident in this stream plot that the radial
structure is recovered remarkably well.

Our results have to be seen in comparison to previous
works on obtaining a parameter free reconstruction of 1d
noise-free [2] and low-noise[6] Langevin equations, where
the method presented here allows the reconstruction even in
the presence of strong measurement noise.

Comparing the optimization of stochasticity in the 2d case
via a Euler-Lagrange form [8], the presented approaches al-
low a semi-analytical treatment of the problem via eigen-
vectors, which successfully recovers the radial orientation in
our example. The simulated annealing routine works with-
out calculating derivatives and with fewer numerical require-
ments, while reducing the risk of optimizing merely to a local
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Figure 2 –Stream field of the eigenvectors for a coupled Langevin sys-
tem taken by deriving the diffusion matrix for the transform ed data set
(x1,x2) = (r cos θ, r sin θ) (107 data-points). Hereg12 = g21 = 0,
g22 = 0.005 and g11 = 0.5r.

minimum of the parameter space.
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