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Abstract: We present a spatial array of Lorenz oscillators,
with each cell lattice in the chaotic regime. This system,
shows spatial ordering due to self-organization of chaos syn-
chronization after a bifurcation. It is shown that an array
of such oscillators transformed under a discrete symmetry
group, does not maintain the global dynamics, altough each
transformed unit cell is locally identical to its precursor.
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1. INTRODUCTION

A covering dynamical system is a system with a discrete
symmetry, and the equations of motion that describes it are
left unchanged by a discrete symmetry group. By means of a
local diffeomorphism, is posible to map it to a locally equiva-
lent dynamical system without symmetry [1]. The dynamical
properties of this new system, such as Lyaponuv exponent
and fractal dimensions are left unchanged [2], although the
resulting system (image) is topologically different from the
former (cover). Due to the sensitivity of chaotic trajectories
to their initial conditions and the consecuent unpredictability
of long term evolution of the orbits, one can hardly anticipate
that chaotic units can construct patterns with strictly ordered
space structures. In this work, we show how locally similar
dynamical systems can exhibit different pattern formations,
and that the parametric changes needed to perform the bi-
furcation have global properties. We also investigate how
a discrete equivariant transformation affect the dynamic be-
havior of an array of chaotic oscillators, and how their global
characteristics, like bifurcations, are changed.

2. MODEL SYSTEM

We take a two-dimensional lattice of coupled Lorenz os-
cillators, with fixed boundary conditions:

ẋij =− σ(xij − yij) + ε52 x (1)

ẏij =− xij zij + r xij − yij + ε52 y

żij =xij yij − βzij + ε52 z

where

52w = wi+1,j +wi−1,j +wi,j+1 +wi,j−1 − 4wi,j (2)

is a two-dimensional difussive coupling, and i, j =
1, 2, · · · , N , where N is the dimension of the N ×N lattice.
The parameter settings are σ = 10, β = 8/3 and r = 27, so
that each single independent Lorenz oscillator is chaotic, and
are left unchanged for the following. The spatial orderings of
the system are obtained varying homogeneuosly the control
parameter ε, and in order to study this transition, we use the
following error functions [3]:

Emin(max) =min
(
E1(m), E2(m)

)
(3)

Emax =max
(
E1(m), E2(m)

)
(4)

where

E1(m) =
1
N

N∑
i

∥∥∥∥x(i, N2 +m)− x(i, N
2
−m)

∥∥∥∥ (5)

E2(m) =
1
N

N∑
j

∥∥∥∥x(N2 +m, j)− x(N
2
−m, j)

∥∥∥∥ (6)

and m is a spatial delay; its value is chosen in the range
0 < m < N/2. With this definitions, we can identify three
types of behavior: when Emin > 0, Emax > 0 there is no
pattern in the array; when Emin = 0, Emax > 0 there is
a mirror symmetry respect to one of the axis i = N/2 or
j = N/2. Finally, when Emin = 0, Emax = 0, the symme-
try is central, i.e., there is a mirror symmetry for each axis.
The mapping of the system (1) into its image system [4] is

u̇ij =(−σ − 1)uij + (σ − r)vij + vijwij (7)

+(1− σ)ρ+ ε52 u

v̇ij =(r − σ)u− (σ + 1)vij − uijwij + (r + σ)ρ

−wijρ+ ε52 v

ẇij =− βwij + 0.5vij + ε52 w,

where ρ =
√
u2 + v2. The system (7) is topologically simi-

lar to a Rössler oscillator.



3. RESULTS

In the Figure (1) the two regimes of the system (1) are
plotted for times greater than the transient. The only dynam-
ical transition present is from disorder to a central symmetry.

Figure 1 – Space pattern of a Lorenz oscillator lattice. Left:
ε = 0.5. Center: ε = 0.9. In both cases N = 31; Right: chaotic
evolution with ε = 0.9 of cell (15, 15).

By means of the error functions (3), we observe that the de-
pendency of the parameter εb where the bifurcation occur
with the size of the array is roughly parabolic, different from
the exponential dependence as proposed in [3]. Altough each
central configuration at which the system arrives after the bi-
furcation depends on the initial conditions, the same cualita-
tive behavior is observed for long enough times. The results

Figure 2 – Space pattern of an image Lorenz oscillator lattice.
Left: ε = 0.4. Center: ε = 2.3. In both cases N = 31. Right:
chaotic evolution with ε = 2.3 of cell (15, 15).

Figure 3 – Variation of the control paramenter ε with the lattice
dimension.

for the image system are plotted in (2). We can see a very dif-
ferent behavior: in this system, made up of locally equivalent
units of (1), the array present two bifurcations: one that goes
from disorder to a mirror symmetry pattern, and from there to

a central symmetry. We found that the most common mirror
symmetry present in this array is about the diagonal axis, so a
redefinition of the error functions was done in order to cuan-
tify it. This behavior is observed for systems without discrete
symmetries, like Rössler, and the change of the control pa-
rameter with the dimension of the lattice is almost linear for
both bifurcation points; the change of ε for the two systems
considered are shown in the Figure (3). The continuos line
shows the εC1 where the random-to-central symmetry bifur-
cation appears in the system (1); the dotted lines correspond
to bifurcation points in the transformed system (7): the up-
per line is the mirror to central bifurcation parameter, εM ,
and the lower is the none to mirror bifurcation parameter.

4. CONCLUSION

Altough identical dynamic information can be gathered
from a cover system and his image (Lyapunov exponent,
fractal dimensions), their behavior in phase space is topolog-
ically different. The system without symmetry is more easy
to study, since there is a reduction of the manifolds in the
asymmetry space. However we observed that the informa-
tion that can be recovered from the mapped lattice is different
in a esential way from the former: i.e, with the tools avail-
able to study spatiotemporal chaos, is imposible to claim for
the origin of the double-bifucated system: an observer can
not say if the array is made with Rössler oscillators, or with
Lorenz images oscillators. More important is the fact that
altough the phase space dynamics of a individual cell image
is simpler, because in the case of a Lorenz oscillator it is a
one-lobe attractor, the dynamic of the lattice is more com-
plicated: it seems to show globally a pattern that recalls the
individual cell phase space dynamics. We found that for large
enough values of ε, the systems reach a stable state with no
chaotic unit-cell behavior. Finally we show numerically that
the dependence of the control parameter with the dimension
of an array of one-lobe coupled systems is almost linear, and
is posible to study finite but high dimensional lattice with-
out the problem of high computational efforts. More work
on cuantitative diferentiation lattice dynamics is needed, al-
tought a small insight has been gained through this work.
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