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The  Swift-Hohenberg  equation  (SHE)  is  a  well 
known  model  for  pattern  formation  [1,2,3].  The  non-
linear  differential  equation  was  conceived  as  a 
representation  of  Rayleigh-Bérnard  convection  [3,4,5], 
but  its  form is recurrent  in systems presenting patterns, 
especially stripe-like patterning, in various contexts. The 
basic SHE equation is:

∂u
∂ t

=[−k c∇22]u−u3

          (1)
where,  is ε a parameter related to the Rayleigh number, kc 

is the critical wave vector, and  u is the velocity vertical 
component of the fluid. We study the dynamics of defects 
in  the  one-dimensional  SHE  with  periodic  boundary 
conditions  via  numerical  integration  [12].  We  define  a 
defect as a local maximum on u2 smaller than a threshold 
value  (typically  90%  of  the  mean  of  the  20%  highest 
peaks),  such that  a  pattern that  has all  peaks at  similar 
heights would have no defect.

Simulating  the  dynamics  for  a  random  initial 
configuration of the fluid velocity, different values for the 
system  length  (L)  and  many  different  values  for  the 
parameter  kc,  we  observe  a  power-law  decay  of  the 
number of defects with time, i.e., N D∝ t− , as shown 
in  Figure  1.  We use  ΔND= ND –  N∞,  where  N∞ is  the 
number of defects after a very long time relaxation, this 
may  be  different  from  zero  for  some  values  of  the 
parameters, specially for kc≤0.4 .  Surprisingly, the decay 
exponent  γ depends  linearly on  kc,  this  can  be  seen  in 
Figure 2.

We also consider  pattern switching by starting the 
system from a initial condition defined by a wave vector 
different  from  the  one  that  grows  more  rapidly  in  the 
presence of noise.
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Figure 1 –  Mean number of defects versus  time in a set of 50 
realizations,  kc=0.5 ; ε=0.1; L=500. 
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Figure 2 – Decay exponent γ versus kc for L=500 and L=1000

References

[1] J. Swift and P. C. Hohenberg, Phys. Rev. A15, 319 (1977).
[2] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,851 (1993).
[3] P.Manneville, Dissipative Structures and Weak Turbulence 
(Academic Press, New York, 1990).
[4] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability 
(Oxford University Press, Oxford, 1961).
[5] R. Dickman, Hidrodinâmica (Notas de aula), avaible at: 
http://www.fisica.ufmg.br/_dickman/transfers/hidro
[8] E. Hernández-Garcia, et al, Physica D 61 (1992) 159-165
[9] E. Hernández-Garcia, et al, Phys. Rev. A 44, 2, 1123(33)
[10] Hao-wen Xi et al, Physica 177 (1991) 356-365
[11] J. García-ojalvo et al, Phys Rev Lett. 71, (1993) 1542
[12] W. H. Press et al., Numerical Recipes (Cambridge University 
Press, Cambridge, 1995).


