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Mean-field dynamo is currently used to model the solar
magnetic cycle [1, 2]. In particular, low-dimensional mod-
els derived from mean-field dynamo equations are useful
to understand the underlying mechanisms of observed sig-
natures in solar and stellar magnetic activities [3, 4]. In
this context, and considering that a low-dimensional mean-
field modelling neglects the small-scale dynamics, the study
of stochastic effects on such systems becomes relevant. In
particular, the onset of the intermittency induced by noise
is important to understand how stochastic perturbations can
change the global dynamics of the system, and help to under-
stand in a simpler manner relevant features of solar activity
such as the Maunder-type minima [5]. Rempel et al. [6]
studied the effect of noise on nonlinear Alfvén waves in a
regime with multistability, including coexistence of periodic
attracting sets and a chaotic nonattracting set (chaotic sad-
dle), showing that an external stochastic source can destroy
attractors, as well as induce chaotic transients and extrinsic
intermittency. Moreover, the effects of Gaussian and non-
Gaussian noise were compared [7]. The theoretical frame-
work to study the role of additive noise in nonlinear dynam-
ical systems was developed by Lai et al. [8]. They showed
that the key mechanism for the onset of noise-induced un-
stable dimension variability, transition to chaos and intermit-
tency, is the presence of a chaotic saddle. External noise in-
duces the interaction between a random attractor with the sta-
ble manifold of a chaotic saddle, changing the global prop-
erties of the dynamical system, measurable by the Lyapunov
exponents.

In this work, we study the random chaotic dynamics
and intermittency of a mean-field dynamo model with α-
quenching, originally proposed by Schmalz and Stix [10],
including an additive noise. The induction and α-quenching
equations for the mean-field dynamo are given by the follow-

ing system of nonlinear equations:
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where An and Bn are the Fourier amplitudes of the poloidal
and the toroidal components of the mean magnetic field, and
Cn is the Fourier amplitude of the dynamical α-quenching
[5, 10]. The variables ξA(t), ξB(t) and ξC(t) are vectors
whose components are Gaussian random variables of zero
mean and unit variance, representing additive noise. The
control parameters are the dynamo number D, proportional
to the square of angular velocity gradient and to the square of
the turnover time of the turbulent convection eddies [12], and
the noise amplitude σ. Choosing the truncation orderN = 4,
and limiting our study to the antisymmetric subspace of so-
lutions, as in [13], Eqs. (1)–(3) reduce to a six-dimensional
dynamical system. Note that when N = 1 Eqs. (1)–(3)
reduce to the Lorenz system [11]. In order to study the influ-
ence of noise on the attractors of the system, we consider the
case where an attractor (periodic or chaotic) coexists with a
chaotic saddle, which can be expected in any periodic win-
dow of a nonlinear dynamical system [8, 9]. We focus on a
periodic window for Eqs. (1)–(3) in the deterministic case
(σ = 0), near D ∼ 206, and study the effects of noise by
fixing the parameter D for two different values within the
periodic window: a) D = 205.88, corresponding to a pe-
riodic attractor, and b) D = 205.8525, corresponding to a
chaotic attractor, before the onset of an interior crisis.

The stochastic differential equations are solved using the
Heun’s method [14]. The dynamical properties of the system
can be characterized by the Lyapunov exponents. As an ex-
ample of the effects of noise, the upper panel of Fig. 1 shows



the first and second Lyapunov exponents as a function of σ,
for the case b). When σ is small the random chaotic attractor
has the same Lyapunov spectrum as the deterministic chaotic
attractor, indicating that the random attractor preserves the
features of the deterministic system. Increasing σ, the ran-
dom attractor undergoes a transition to a more chaotic state,
at σc ≈ 10−3.1. This transition occurs in a continuous man-
ner. Going to greater values of σ, the first Lyapunov expo-
nent reachs asympotatically the value of the first Lyapunov
exponent of the surrounding chaotic saddle (brown dashed
line in the upper panel of Fig. 1). Lai et al. [8] found that

Figure 1 – a) First and second Lyapunov exponent as a function
of the noise level σ. b) Power-law scaling of the largest Lya-
punov exponent after the onset of the noise–induced enlarge-
ment of the stochastic chaotic attractor at σc = 10−3.5.

the first Lyapunov exponent obeys an algebraic scaling law
near the transition. The lower panel of Fig. 1 shows the first
Lyapunov exponent as a function of σ − σc in log-log scale.
A power-law scaling of λ1 clearly holds for noise amplitude
arround σc, in agreement with the finding of Lai et al. [8].
Further details of the noise-induced intermittency in a mean-
field dynamo will be presented.
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