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1. INTRODUCTION

In nature and science, data that differs from the mean usu-
ally have great relevance. Considering the visual attention of
animals, for example, the visual stimulus that call more at-
tention are not the homogeneous part of the visual scene, but
the changing of signal intensity, such as the contours of the
objects [1]. This kind of data is typically referred to outlier
or anomaly [2]. There are several definitions of outlier in
the literature. According to [3], an outlier is an object that
appears to deviate significantly from other members of the
same sample set. Another way to define outlier is that an out-
lier is an observation that seems to be inconsistent with the
rest of the data set [4]. In a data set, outliers occur for several
reasons [2]. Some of them are human errors and failures in
measuring. Instances from these events usually are consid-
ered as noises or impurities in the data set and generally are
pruned or eliminated. However, often outliers are relevant
data and may contribute significatively to the information in
a data set. Intrusion into a monitoring system, novelty find-
ing in image analysis and fraud identification in systems for
granting credit are some examples in which outliers represent
relevant information. In these cases their identification is an
important task.

Over the last decade there has been an increased interest
in network research, with the focus shifting away from the
analysis of single small graphs and their properties to con-
siders large-scale statistical properties. The first exhaustive
and rigorous study on large networks was made by Erdös and
Rényi [5], who gave it the name “random graph”. In 1998,
Watts and Strogatz [6] discovered the small-world property
in large scale networks. In 1999, Barabási and Albert [7]
discovered that the degree distribution of many complex net-
works obeys power law, the so called scale-free networks.
After these main findings, many researches have been con-
ducted on complex networks and currently it turns out to be a
well defined research area. As a consequence, a large amount
of research results have been reported [8]. However, little has
been studied about the identification of outlier nodes in com-
plex networks.

The identification of outlier nodes in a network can be
done considering several criteria. For example, if we con-
sider only the connectivity of the nodes in a scale-free net-
work, the most outlier nodes would be the hubs, because their
number of connections is generally much higher than the av-
erage connectivity of the network. We analyze the problem
of identifying outliers in a network structure and propose an
outlier measure by using the random walk distance measure
[9] [10] [11] [12] and a dissimilarity index between pairs of
vertices. The method determines a “view” to the whole net-
work for each node (the distance measure) and infers that
outliers are those nodes whose view differs significantly from
majority of the nodes. This perspective, incorporate both lo-
cal and global information of the network and can give more
general outlier detection results.

2. OUTLIER DETECTION METHOD

Considering a network with N nodes where the set of
nodes is denoted by V = {1, 2, . . . , N} and the edges be-
tween pairs of vertices are represented in the generalized
adjacency matrix A, the probability of a particle moving
from one node i to a node j in one iteration is given by
Pij = Aij/

∑N
l=1 Ail. The random walk distance, which

is the average number of steps required for a particle moving
through the network from i to j, can be calculated by

di,j = Pij +
∞∑

m=1

(m+ 1)
∑

k1 ̸=j;...;km ̸=j

Pik1Pk1k2 . . . Pkmj ,

(1)
where m is the number of steps between i and j - the equa-
tion considers paths of all sizes. Since the transfer matrix P
satisfies the characteristics of a Markov irreducible transition
matrix [13], we can apply the convergence theorem to a vec-
tor fixed point, where X = PnX when n → ∞, and obtain
the algebraic equation of the distance,

[I −B(j)]


d1j
d2j

...
dNj

 =


1
1
...
1

 , (2)

where I is the identity matrix N×N and B(j) is the transfer



matrix P except that Blj = 0 for all l ∈ V . Solving this
system for all j ∈ V , we obtain the random walk distance
matrix. We chose to normalize this matrix into the interval
[0, 1]. We obtain the dissimilarity index which measures how
different two nodes are viewed by the other all in a network
by

Λ(i, j) =

√∑N
k ̸=i,j(dki − dkj)2

(N − 2)
. (3)

Calculating Λ(i, j) for every pair ⟨i, j⟩ we obtain the sym-
metric matrix of dissimilarity. We can identify the most
unique nodes in the network by establishing an outlier score
of each node i. We chose the sum of the dissimilarity index
to provide this score, as the following equation,

σ(i) =
1√
N

N∑
l=1

Λ(i, l), (4)

where the sum is divided by the square root of N keeping
the score close in the interval [0, 1]. From the score σ(i),
we ranked the set V in descending order, such that the first
elements of the ranking have larger score. These elements
are the most singular node in the network.

3. OUTLIER DETECTION RESULTS

We have applied the method to several artificial and real
networks and interesting results have been obtained. Par-
ticularly, we analyzed the results of applying the method to
the Saccharomyces cerevisiae protein-protein interaction net-
work by using the database by Krogan et al. [14]. Once
the choice of the number of outlier nodes is arbitrary, we
calculated the number of proteins belonging to each bio-
logical function among a given number of outliers (Fig. 1).
The proteins related to cell cycle and DNA processing and
metabolism represent more than 80% of the 30th outliers.
For larger number of outliers, the fraction tends to be pro-
portional to their occurrence on the network. In our analysis,
we can infer that the proteins related cell cycle and DNA
processing and metabolism has the most different “view”
through the network, being peripherals nodes in the network.
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Figure 1 – (color online) The fraction of proteins of each pro-
teins class among the first outliers.
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