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1. INTRODUCTION

Riddling is an intrinsic phenomenon of dynamical sys-
tems which fulfill specific conditions and leads to basins of
attraction that never exhibit a disk in the phase space. We
say that a dynamical system has a chaotic attractor whose
basin of attraction is riddled with “holes” belonging to the
basin of another (non necessarily chaotic) attractor. Riddling
means that every point in the basin of attraction of attractor A

has pieces of the basin of attraction of attractorB arbitrarily
nearby. Physical consequences can be very serious in terms
of predicting the final state of a given initial condition in a
system which presents riddled basins [1, 2].

2. MATHEMATICAL CONDITIONS

For riddled basins of attraction the system must satisfy
the following conditions [2]:

1. There is an invariant subspace whose dimension is
smaller than the phase space dimension.

2. The dynamics on the invariant subspace has a chaotic
attractor.

3. There is another attractor, chaotic or not, and not be-
longing to the invariant subspace.

4. The chaotic attractor is transversely stable in the phase
space.

5. A set of unstable periodic orbits embedded in the
chaotic attractor becomes transversely unstable and at
least one of the Lyapunov exponents along directions
transverse to the invariant subspace, although negative
for almost any orbit in the attractor, experiences positive
finite-time fluctuations.

3. MECHANICAL SYSTEM

The mechanical system we have choose for the riddling
study consists of a particle of unit mass moving under a dis-
sipative friction, and a periodic forcing in thex direction,

r̈ + bṙ + ∇V = A[sin(ωt)]x (1)

wherer = xx+ yy, b is the coefficient of dissipation,A and
ω are the amplitude and frequency of the periodic forcing.
V = V (x, y) is they-symmetric bidimensional potential,

V (x, y) = −a cosx + (x + χ)y2 − y4. (2)

The choice of parametersa = 1.0, b = 0.22, ω =
1.0, A = 2.7 ensures that at the invariant subspace there is
a chaotic attractor [3]. Fig. 1(a) shows the riddled basin of
attraction of the system given by Eq. 1, withχ = 2.5. The
maximal transversal Lyapunov exponent and the distribution
of the finite time largest transversal Lyapunov exponent are
shown in Figs. 1(b) and (c).

4. SCALING LAWS

Qualitatively descriptions of the riddling have already
been presented by the positive fluctuations of the finite time
Lyapunov exponent while the infinity Lyapunov is negative,
associated to the fractal form of the basin of attraction. Quan-
titative analysis of the riddled basins are presented through
the scaling laws.

The first scaling law relates the fractionP⋆ of the basin of
attraction that escapes from the chaotic attractor to the dis-
tancey = y0 of the initial condition to the invariant subspace
where the chaotic attractor is placed.P⋆, is expected to scale
with y0 as a power law [4],P⋆ ∼ |y0|

η, whereη is given in
terms of the finite time Lyapunov exponent,η = 2|λ⊥|

nσ2 . The
second scaling law plays the role of the measuring the error
in the prediction of the final state: the fraction ofε-uncertain
points,〈p〉, is the probability of making a mistake when at-
tempting to predict which basin the initial conditionx0 is in,
given a measurement uncertaintyε, and is expected to scale

as〈p〉 ∼ εφ, φ =
λ2

⊥

2nσ2λ‖
.
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Figure 1 – (a) Riddled basin of attraction. Black dots are the
basin of attraction of the attractor placed at y = py = 0. (b)
Maximal transversal Lyapunov exponent with the control pa-
rameter χ. (c) Distribution of the finite time largest transversal
Lyapunov exponent for a typical orbit in the y = 0 invariant
subspace for different finite time computations.

5. CONCLUSIONS

In our forced damped pendulum the riddling indeed will
be controlled via the parameterχ, for χ > 2.32, approxi-
mately. For a suitable choice ofχ there will be unstable peri-
odic orbits in the chaotic attractor contained iny = py = 0,
exhibiting positive fluctuations in the finite time Lyapunov
exponent. As the basin of the attractor iny = 0 is riddled
with holes belonging to the basin of the final statey → ∞, it
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Figure 2 – (a) Numerical calculation of the fractionP⋆ of orbits
belonging to the basin of the chaotic attractor iny = py = 0

with the distance y0 to the invariant subspace. (b) Numerical
calculation of 〈p〉, which plays the role of the measuring the er-
ror in the prediction of the final state.

follows that for any distancey0, no matter how small, there
is always a nonzero value ofP⋆. The important practical ap-
plications of systems that exhibit a forced damped pendulum
behavior, like clocks or mechanical arms, requires an inves-
tigation of the presence of riddled basins of attraction.
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