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Generally the systematic study of the long term behav-
ior of the solutions of deterministic systems is developed by
investigating the dynamics of such systems as a control pa-
rameter set is varied. By doing so, one is able to track and
analyze local and global bifurcations that account for the ap-
pearance and disappearance of distinct asymptotic solutions
and for the changes undergone by the phase space structures.

In this contribution, we investigate global bifurcations of
a biparametric two-dimensional map, known as the standard
map, derived from a model for the periodically kicked me-
chanical rotor. This archetypical system is adequate for the
study of several fundamental features such as multistability,
crises and chaotic transients.

Departing from the conservative case of the map, as dissi-
pation builds up, we describe the evolution of periodic solu-
tions and their basins, paying special attention to the effects
of the dissipative and forcing parameters in the feature of
multistability. Also, we relate numerically the mechanism
of global bifurcations associated to small chaotic attractors
in the multistable system. Through the characterization of
an interior, a merging and a boundary crisis, we study the
crucial role played by fundamental invariant structures, such
as unstable periodic orbits (UPO’s) and their invariant man-
ifolds, in the mechanisms by which the phase space is glob-
ally transformed.

The understanding and characterization of such mecha-
nisms and of the structures involved are essential to the com-
prehension of complex behavior of nonlinear systems in sev-
eral areas of science and engineering.

The standard map derives from a model for the motion of
a periodically kicked mechanical pendulum - a bar attached
at one end to a pivot and subjected to a vertical periodic im-
pulsive force at the other end of the bar. In the conservative
case the pivot is frictionless. The discrete time system is re-
lated to the state of the continuous time system, described by
a set of two first order differential equations, just after each
periodic impulse. The map is usually described by

θk+1 = (θk + pk)mod(2π),

pk+1 = (1 − ν)pk + f0sin(θk + pk),
(1)

whereθ andp correspond, respectively, to the angular posi-
tion and momentum of the mechanical pendulum andf0 and
ν are the parameters of the system. The first parameter,f0,
accounts for a forcing of constant strength applied in the con-
tinuous time system at timesnT , n = 1, 2, ..., with T as a
constant period. The second one,ν, is the damping parame-
ter and varies from 0 (no dissipation, Hamiltonian system) to
1 (very strong damping).

As the two parameters are varied, this map presents a
wide assortment of dynamical phenomena. Forν = 0 the
dynamics is ruled by the typical phenomenology of Hamilto-
nian systems depending exclusively of the forcing parameter.
Forf0 = 0, the system is integrable andp is a constant of the
motion. Whenf0 > 0, the integrability of the system is bro-
ken and the phase space consists of regions of chaotic sea
interspersed with periodic islands [1].

For 0 < ν 6 1 the map is dissipative. When some
amount of dissipation is introduced, the stable periodic or-
bits of the conservative system become sinks and the chaotic
motion is replaced by long chaotic transients before the tra-
jectory eventually settles down in one of the sinks. For very
small damping the dynamical behavior is mainly dominated
by the appearance, disappearance and coexistence of peri-
odic attractors of several different periods. The complexity
of the bifurcation structure depends strongly onf0 andν and
the feature of multistability is prevalent for very small and
moderate dissipation [2, 3]. In the case of maximum dissipa-
tion, the map reduces to the one-dimensional circle map with
zero rotation number [4].

Typically, the number of coexistent periodic attractors can
be made arbitrarily large asν → 0, for intermediatef0.
Most of the detected attractors have low periods because high
period and chaotic attractors have very small basins which
makes their detection more complicated. The basins of the
multiple coexistent attractors are strongly intertwined and
have fractal boundaries which appear to spread over most



of the phase space, resulting in a high sensitivity to the final
state [2]. Figure 1 displays the bifurcation structure asν is
varied forf0 = 4.5.

Figure 1 – Bifurcation diagram for f0 = 4.5 and 0 < ν < 1.

As ν increases, chaotic attractors persist for larger inter-
vals in parameter space and their basins are large enough
as to allow them to be more easily found throughout phase
space. Figure 2 displays the basins of attraction of a small
chaotic attractor and three period-two attractors which co-
exist for f0 = 4.5 andν = 0.47330. Generally this small
attractors appear through a period doubling cascade starting
at a saddle-node bifurcation and they disappear when the at-
tractor collides with an UPO on the boundary of its basin of
attraction in a global bifurcation known as boundary crisis.

Figure 2 – Basins of attraction of three period-two attractors
(white, cyan and blue) and of the chaotic attractor (magenta)
which coexist forf0 = 4.5 and ν = 0.47330.

We have numerically followed and characterized a bound-
ary crisis (displayed in Figure 3) for a typical chaotic attrac-
tor, as well as a merging and an interior crisis, depicting the
role of the invariant structures involved, for the case of inter-
mediatef0.

We also describe the case of weak dissipation and forcing.

Figure 3 – Left side: stable (blue) and unstable (red) manifolds
of the period-18 UPO which collides with the chaotic attractor
(black) at the boundary crisis (ν = 0.47333695) shown for f0 =

4.5 and ν = 0.47330. Right side: magnification of the lower
part of the phase space shown in left side along with nine points
(green crosses) of the period-18 UPO.

Unlike the previously described situation, the total number of
attractors is limited for lowf0 andν. In this case, one is able
to observe the evolution of the basin boundary structure as
the parameters are varied.

The performed numerical study and characterization of
the structures involved in the global transformations of the
phase space is important to the comprehension of multistable
systems and the observed phenomenology is common to a
wide variety of dynamical systems.
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