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Vibro-impact oscillators have moving parts collid-
ing with either moving or stationary components, and
are often found in engineering applications, as vibration
hammers, driving machinery, milling, impact print ham-
mers, shock absorbers, and gear rattling [1-3].

In this work we investigate the multistability of a
weakly dissipative vibro-impact oscillator. We study a
model of a vibro-impact oscillator, known as impact-
pair, composed of a point mass m free to move inside a
periodically driven box [4].

For the conservative limit of this system, we identify
the location of the main islands and their elliptic points
on the phase portrait. The multistability of the system
is identified by considering a small amount of dissipa-
tion [5], the elliptic points giving rise to attractors, i. e.,
stable fixed points. Moreover, to study the arising at-
tractors we use common tools of chaotic dynamics such
as phase portraits, bifurcation diagrams, and basins of
attraction [6, 7].

The point mass m displacement is denoted by x, and
the box length v. The mass m is free to move inside the
box and the motion of the box is described by a periodic
function, asin(wt), see Figure 1.
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Figura 1 — Model of the impact-pair system

The equation of motion of the point mass m in the
absolute coordinate x is:

i=0. (1)

Denoting the relative displacement of the mass m by
y, we have

x =y + asin(wt). (2)
Substituting Eq. 2 into Eq. 1, the equation of motion
in relative coordinate y is

2

= aw”sin(wt), —-v/2<y<v/2. (3)

Integrating Eq. 3 and invoking initial conditions
y(to) = yo and (y)(to) = 9o, the displacement y and
the velocity 1, between impacts, are

y(t) = yotasin(wty) —a sin(wt)+[gyo+aw cos(wty)](t—to).

(4)

Y(t) = 9o + acos(wty) — aw cos(wt). (5)

An impact occurs whenever y = v/2 or y = —v/2.
After each impact, we apply into Eq. 4 and Eq. 5 the
new set of initial conditions (Newton’s law of impact)

to =t,

Yo=Y, Yo=—TY. (6)

where r is a constant restitution coefficient.

The dynamics of the impact-pair system is obtained
from Eq. 4 and Eq. 6 and the system depends on the
control parameters r, o, v and w. As we are interested
to study the attractors in the transition from the dissi-
pative to the conservative system, we consider the vari-
ation of r and keep the others parameters constant. We
vary the control parameter r in the interval 0.8 < r <1
and choose a = 0.05, v = 2 and w = 8.

To evidence the multistable character of the system,
in Figure 2 we show a bifurcation diagram for 0.4 <
a < 0.55 and r = 0.99. The coexistence of attractors
characterizes a multistable system.

The attractors, stable fixed points in the phase space,
observed in Figure 2, in the dissipative case correspond
to the elliptic points in the conservative phase portrait
(obtained for r = 1).

To show the onset of attractors, we compare the
phase space for a small dissipation, » = 0.99, with the
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Figura 2 — Bifurcation diagram for varying o and
r = 0.99.
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Figura 3 — (a) Partial phase portraits for a weakly
dissipative system for o = 0.05 and r = 0.99. (b)
The corresponding conservative limit with » =1 and
a = 0.05.

one obtained in the conservative limit. Thus, Figure 3(a)
shows the attractors formed by the islands shrinking.
The correspondent islands, for the conservative case, are
shown in Figure 3(b).

Our numerical results indicate the existence of the
multistability in the studied impact-pair system. For
a small dissipation, we observe the onset of attractors
associated to the elliptic points obtained in the conser-
vative limit.
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