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Abstract: We investigate the spatiotemporal dynamics of
a coupled map lattice focusing on the experimentally ob-
served features in neural networks. The temporal evolution
is characterized by Lyapunov exponents, whereas the spatial
patterns are analyzed through clustering and locking-time,
which is the necessary time for the lattice to achieve the equi-
librium state. We also calculate the entropy per network el-
ement as a measure of information capacity of the network.
Our results show that CML exhibits similar features to one
observed in neural networks when coupling strength is weak.
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1. INTRODUCTION

There are in the nature a wide class of systems whose
elements can interact with each other and due to this, they
can exhibit interesting spatiotemporal patterns. Such systems
are studied from networks models, in which the nodes corre-
spond to parts or individual elements and the links to inter-
actions between them. In neuron populations case coupled
maps lattices (CMLs) has been considered suitable models,
since they allow to reproduce some experimentally observed
features such as: a rapid response to stimuli, an irregular or
chaotic behavior of individual elements and a high variabil-
ity of activity patterns [1]. However, although the irregular
behavior is a map characteristic, the two other seem to com-
pete, since strong interactions increase the stimuli spreading
whereas decrease the multiplicity of activity patterns. Thus,
understanding how the interaction between the maps affects
both processes is important to identify situations in whichthe
system is consistent with the experimental observations. In
this work we study this influence in a bidimensional CML
with coupling Laplacian-type local.

2. THE MODEL

We examine a CML consisting ofN ×N maps arranged
on a square lattice and whose dynamics is given by

x
(i,j)
n+1 = (1− ε)T (x(i,j)
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ε

4

[

T (x(i±1,j)
n ) + T (x(i,j±1)

n )
]

(1)

wherei, j correspond to position of the sites on network,ε ∈
[0, 1] is the coupling strength and± denotes both the sum
and subtraction.The term T (x) refers to the local dynamics
for which we use tent map

T (x) ≡
{

ax , 0 < x < 1
2

a(1− x) , 1
2 ≤ x ≤ 1

(2)

wherea ∈ [0, 2] is a control parameter. Fora < 1 all orbits
converge to the fixed pointx∗ = 0, whereas fora = 1 all
initial points are fixed points. On the other hand, fora > 1
there is one unstable fixed point inx∗ = a/(a + 1) and the
dynamic presents chaotic regimes. Here we usea =

√
2.

To such parameter value the density of an ensemble of non-
interacting maps can converge to a stationary distributionor
oscillate with certain period. Fig. (1) show the density tem-
poral evolution forx0 ∈ [0.1; 0.9]. We can observe that den-
sity oscillates between a pattern and its inverse forn > 5.

Figure 1 – Density evolution of an ensemble of 100.000 tend
maps with a =

√

2. The initial values were uniformly dis-
tributed on the interval [0.1,0.9].

3. RESULTS

The dynamical behavior of the system is characterized by
its spectrum of Lyapunov exponents. For the CML (1) with
periodic boundary conditions we verified that such spectrum
is given by
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whereλu = ln |a| is the Lyapunov exponent of the uncou-
pled map andm = 0, 1, · · · , N2. Thus, since the CML has



at least one positive Lyapunov exponent its evolution is con-
sistent with the chaotic dynamic.

Fig. 2 exhibits the evolution of two activity patterns of
the CML forε = 0.2. We can observe a periodic behavior as
one that we found for the density of a ensemble of uncoupled
maps (Fig. 1).
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Figure 2 – Activity patterns of the CML for ε = 0.2 and differ-
ent inputs: (a) random initial distribution in [0,1]. (b) same as
(a) but with an additional cross of value 0.5.

In order to examine the activity patterns we use a coarse
graining approximation. We express the original pattern asa
binary pattern according to fixed pointx∗ = a/(a+ 1). Fig.
3 exhibits both patterns for different initial distributions. Due
to the similarity between them we can claim that that pointx∗

is a suitable threshold for the coarse graining. Considering

a b c

Figure 3 – Original and binary patterns for ε = 0.2, n = 20 and
different initial patterns in [0, 1].

the binary pattern we use the Hoshen-Kopelman algorithm
[1] in order to determine the number of clusters and mean
cluster size. Fig. 4a and 4b show both quantities with respect
to the coupling strength. We can observe that the number of
clusters (mean cluster size) decreases (increases) when the
coupling strength is increased. We also computed the prob-
ability p(x|xnn) = p(x, xnn)/

∑

x p(x, xnn) which is the
probability of finding a site in the up state(x = 1) or in down
(x = 0) when its four-neighbors are in a given configuration.
Then, we calculate the entropy per network element

H = −
∑

xnn

∑

x

p(x|xnn) ln p(x|xnn) (4)

which corresponds to the uncertainty of state of one site in
relation to the states of the neighboring elements [1]. Fig.5a
shows the entropyH with respect to the strength coupling.

We can see that it has a maximum value forε = 0 and de-
creases whenε is increased.
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Figure 4 – Number of clusters (a) and mean cluster size (b) with
respect to strength coupling forN = 40 and 1.000 random ini-
tial distributions in [a(1− a/2), a/2].

Finally, we study the locking-time through correlation
function

rn =
1
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wherex(i,j)
s is the state ofi, j-th element in the binary pat-

tern stationary. Since in stationary statern is 0 or 1, due the
period-2 oscillation of the density, we consider the locking-
time whenrn < 0.01. We can observe in Fig 3b that locking-
time is larger for strong strength coupling.
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Figure 5 – Entropy per element (a) and inverse locking time (b)
as a function of strength coupling.

In conclusion, we investigate some spatiotemporal as-
pects of a CML with periodic activity pattern. We observe
that the spatial patterns depends on initial states distribution.
Using the coarse graining approximation we express the orig-
inal pattern in binary and we analyze it with respect to the
coupling strength. We analyze the clusters, the entropy per
element unit and the locking-time. Our results show that the
CML has a faster convergence to the steady periodic pattern
and it has higher entropy when the coupling strength is weak.
Thus, this is the condition for the model exhibits the experi-
mentally observed features in neural networks.
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