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Abstract: We investigate the spatiotemporal dynamics ofwherei, j correspond to position of the sites on netwarlg
a coupled map lattice focusing on the experimentally ob{0, 1] is the coupling strength antt denotes both the sum
served features in neural networks. The temporal evolutioand subtraction.The term T (x) refers to the local dynamics
is characterized by Lyapunov exponents, whereas the Epatifmr which we use tent map
patterns are analyzed through clustering and lockingstime
which is the necessary time for the lattice to achieve thé-equ T(x) = { af
librium state. We also calculate the entropy per network el-
ement as a measure of information capacity of the networkvherea € [0,2] is a control parameter. Far < 1 all orbits
Our results show that CML exhibits similar features to oneconverge to the fixed point* = 0, whereas fou = 1 all
observed in neural networks when coupling strength is weaknitial points are fixed points. On the other hand, dor- 1
there is one unstable fixed pointiri = a/(a + 1) and the
. dynamic presents chaotic regimes. Here we wse /2.
keywords: Activity Patterns, Lyapunov exponents, ENtropy. 1 g,ch parameter value the density of an ensemble of non-
interacting maps can converge to a stationary distribution
oscillate with certain period. Fig. (1) show the density tem
There are in the nature a wide class of systems whoggoral evolution forzy € [0.1;0.9]. We can observe that den-
elements can interact with each other and due to this, thesity oscillates between a pattern and its inverserfas 5.
can exhibit interesting spatiotemporal patterns. Suctesys
are studied from networks models, in which the nodes corre-
spond to parts or individual elements and the links to inter-
actions between them. In neuron populations case coupled
maps lattices (CMLs) has been considered suitable models, -
since they allow to reproduce some experimentally observed o
features such as: a rapid response to stimuli, an irregular o o
chaotic behavior of individual elements and a high variabil °
ity of activity patterns [1]. However, although the irregul

behavior is a map characteristic, the two other seem to COMEigure 1 — Density evolution of an ensemble of 100.000 tend

pete, since strong interactions increase the stimuli simga  maps with « = /2. The initial values were uniformly dis-
whereas decrease the multiplicity of activity patternsu§;h  tributed on the interval [0.1,0.9].

understanding how the interaction between the maps affects

both processes is important to identify situations in whiah

system is consistent with the experimental observations. 13. RESULTS
this work we study this influence in a bidimensional CML
with coupling Laplacian-type local.
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1. INTRODUCTION
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The dynamical behavior of the system is characterized by
its spectrum of Lyapunov exponents. For the CML (1) with

2 THE MODEL periodic boundary conditions we verified that such spectrum
is given by
We examine a CML consisting df x N maps arranged )
. AR -
on a square lattice and whose dynamics is given by N = bl et € Z o < 7rjgm) ®
2 ~ N

i,j i, € i+1,j i .
27 = (1 - e)T(x() + 1 [T(lﬁﬂ'])) + T (] ’]il))} where)\, = In|al is the Lyapunov exponent of the uncou-
(1) pled map andn = 0,1,---, N2, Thus, since the CML has



at least one positive Lyapunov exponent its evolution is conWe can see that it has a maximum value fo&= 0 and de-
sistent with the chaotic dynamic. creases whenis increased.

Fig. 2 exhibits the evolution of two activity patterns of
the CML fore = 0.2. We can observe a periodic behavior as
one that we found for the density of a ensemble of uncoupled
maps (Fig. 1).
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; - Figure 4 — Number of clusters (a) and mean cluster size (b) with

respect to strength coupling for N = 40 and 1.000 random ini-
Figure 2 — Activity patterns of the CML for ¢ = 0.2 and differ- tial distributions in [a(1 — a/2),a/2].

ent inputs: (a) random initial distribution in [0,1]. (b) same as

(a) but with an additional cross of value 0.5.
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Finally, we study the locking-time through correlation

. L. function
In order to examine the activity patterns we use a coarse 1
Tn = N2 Z
4]

graining approximation. We express the original pattera as
binary pattern according to fixed point = a/(a + 1). Fig.
3 exhibits both patterns for different initial distributie. Due  wherex{"? is the state of, j-th element in the binary pat-
to the similarity between them we can claim that that pefnt  tern stationary. Since in stationary stateis 0 or 1, due the
is a suitable threshold for the coarse graining. Considerinperiod-2 oscillation of the density, we consider the logkin
time whenr,, < 0.01. We can observe in Fig 3b that locking-
: ’ ‘ time is larger for strong strength coupling.
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Figure 3 — Original and binary patterns for ¢ = 0.2, » = 20 and €

different initial patterns in [0, 1]. Figure 5 — Entropy per element (a) and inverse locking time (b)

as a function of strength coupling.
the binary pattern we use the Hoshen-Kopelman algorithm
[1] in order to determine the number of clusters and mean |, conclusion, we investigate some spatiotemporal as-

cluster size._ Fig. 4a and 4b show both quantities with re;spe(bects of a CML with periodic activity pattern. We observe
to the coupling strength. We can observe that the number g5t the spatial patterns depends on initial states disteib.
clusters (mean cluster size) decreases (increases) waen sing the coarse graining approximation we express the orig
coupling strength is increased. We also computed the prona| pattern in binary and we analyze it with respect to the
ability p(z|znn) = p(@, Tnn)/ 2., P&, 2nn) Which is the  coypling strength. We analyze the clusters, the entropy per
probability of finding a site in the up state = 1) orin down  gjement unit and the locking-time. Our results show that the
(z = 0) when its four-neighbors are in a given configuration.cj_ has a faster convergence to the steady periodic pattern

Then, we calculate the entropy per network element and it has higher entropy when the coupling strength is weak.
Thus, this is the condition for the model exhibits the experi
H=- Z ZP($|$nn) In p(z|znn) 4 mentally observed features in neural networks.
Tnn I
.References

which corresponds to the uncertainty of state of one site in
relation to the states of the neighboring elements [1]. 5&g.  [1] C. Hauptmann, H. Touchette, M. C. Mackey, Phys.
shows the entropy{ with respect to the strength coupling. Rev. E, Vol. 67, No 026217, 2003, and references.



