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Information plays a central role in conditioning structure
and determining collective dynamics in many complex sys-
tems. For example, the ability to process and react to infor-
mation certainly influences how neurons and synapses inter-
act in large numbers to generate the complexity of cognitive
processes. However, systematic methodologies for identify-
ing functional relations between units of successive complex-
ity, involved in information processing and storage, are still
largely missing. New interest has arisen in applications of
information theory to dynamical and statistical systems with
many degrees of freedom. Specifically, information quanti-
ties have been shown to identify and classify spatial [1] and
temporal [2] correlations, and reveal if a group of variables
may be mutually redundant or synergetic [3, 4]. In this way
an information theoretic treatment of groups of correlated de-
grees of freedom can reveal their functional roles as memory
structures or those capable of processing information.

Here we present an approach based on information theory
applied to the correlated statistical state of many variables.
The uncertainty in the state of X can be quantified by its
Shannon entropy S(X); measuring a correlated variable Y
contributes reduces its uncertainty, thus the conditional en-
tropy of X given Y is S(X|Y ) ≤ S(X) [5]. We also con-
sider the optimization problem of minimizing the uncertainty
in X given k measurements {Y }k within a larger set, where
{Y }k refers to the set Y1, . . . , Yk. Specifically, if a set exists
such that S(X|{Y }k) = 0, then it fully determines the state
of X and no uncertainty remains. We seek the measurement
set of size k resulting in the smallest remaining uncertainty.
The computational complexity of this search grows combi-
natorially with the number of arrangements of size k within
n variables, which quickly becomes prohibitive. To evade
this problem, we introduce the exact expansion

S(X|{Y }k)− S(X) = −I(X; {Y }k) (1)

=
∑

i

∆S(X)
∆Yi

+
∑
i>j

∆2S(X)
∆Yi∆Yj

+ . . . +
∆kS(X)

∆Y1 . . . ∆Yk
.

The variational operators in Eq. (1) define the change in en-
tropy resulting from a measurement as

∆S(X)
∆Yi

≡ S(X|Yi)− S(X) = −I(X; Yi) (2)

∆2S(X)
∆Yi∆Yj

≡ −∆I(X; Yi)
∆Yj

= I(X; Yi)− I(X; Yi|Yj), (3)

and so on. Higher order variations follow automatically from
the successive application of the first variation. This expan-
sion has two important properties. First, each term in the
expansion at order k accounts for an irreducible set of cor-
relations among a size-k group of Yi nodes with the target
X . Statistical independence among any of the Yi results in
a vanishing contribution to that order and terminates the ex-
pansion. If the Yi are correlated in pairs, but not in higher
order multiplets, then only terms with k ≤ 2 will be present,
and so on. Thus, for a system where not all correlations are
realized, expression Eq. (1) allows the identification of corre-
lated submultiplets, and determines their mutual organization
in specifying the state of X . The second important property
of this expansion is that the sign of each nonvanishing varia-
tion reveals the informational character of the corresponding
multiplet. Specifically, negative indicates that the k-multiplet
contributes to the state of X with more information than the
sum of all its subgroups (synergy), while positive indicates
the opposite (redundancy) [4]. We define a synergetic (re-
dundant) core as a set {Y }k such that its variation and the
variations of all its subgroups of two or more nodes are nega-
tive (positive). Here we use the expansion in Eq. (1) to define
the problem of determining the set and decomposition of the
Yi in terms of functional information arrangements that best
account for the stochastic behavior of a target X .

To illustrate this methodology, we apply it to temporal
action potential activity from murine frontal cortex neuronal
cultures grown in vitro on non-invasive microelectrode ar-
rays (MEAs) [6]. Details of MEA fabrication and culture
preparation are described elsewhere [4, 7]. These experimen-
tal platforms have become model systems for studying living
neuronal networks in controlled environments. Results pre-
sented here refer to 62 cells of a 42 day old cortical network.



Figure 1 – Joint entropy of neuron 46 and a set of other neurons
of size k. The next neuron measured is chosen by maximizing
the variation to various orders; the neuron numbers appear for
the exact curve. Inset: Histogram of entropy fraction for each
neuron remaining after all possible measurements.

Figure 2 – (a) Frequency of redundant (red) and synergetic
(blue) cores versus size k. (b) Purely redundant (red) and purely
synergetic (blue) circuits relative to neuron 46. Neurons and
groups with the most information about 46 are closest to the
center. Arcs identify neurons in multiple functional groups.

We analyze a 5 hour recording (2.3 million spikes) of net-
work activity. We construct binary states for each neuron’s
time series and use these to estimate probability distributions
for firing pattern states of k neurons. Fig. 1 shows the rel-
ative entropy reduction of a target neuron, due to successive
measurements of other neurons. Different lines correspond
to searches for the optimal sequence of measurements at dif-
ferent orders of approximation in the expansion in Eq. (1).
A search to exact order means that all {Y }k are considered,
given the previous {Y }k−1, and the set {Y }k with greatest
information gain is chosen. Fig. 1(inset) shows the histogram
of the ratio of final to initial entropy for all 62 neurons. Final
entropy refers to the fraction of a neuron’s initial entropy left
unaccounted for once all other neurons are measured. Re-
markably, the stochastic patterns of most cells can be nearly
fully predicted by the activity of others, even if most degrees
of freedom in the actual network remain unobserved.

Fig. 2(a) shows the frequency of synergetic and redundant
cores, while Fig. 2(b) shows the reconstruction of circuits

from functional subgraphs which account for the activity of
target neuron 46 of Fig. 1. Evidently the target neuron is
part of both redundant and synergetic functional multiplets,
with the former being substantially more abundant. The tar-
get neuron is also part of a synergetic circuit with other neu-
rons, several of which are part of smaller mutually redundant
subgraphs. Some of these can, at least partially, be inter-
changed with other neurons carrying the same information,
resulting globally in an interconnected ensemble where spe-
cific synergetic functional relationships are embedded on ro-
bust redundant cell arrangements.

In summary, we present a new information theoretic ap-
proach to constructing functional subgraphs in complex net-
works where nodes display observable stochastic dynamics.
By performing targeted searches guided by expected infor-
mation gain, we avoid some of the combinatorial issues of
other methods. We apply this approach to action potential
time series from cortical networks and find that the activity of
most neurons is largely determined by observing other cells.
An important fraction of a neuron’s entropy is contained in
multiple cell arrangements of varying size. These findings
agree with recent neuronal network reconstructions from bi-
nary correlations [8] and small multiplets [4], and also il-
luminate the contribution of higher order correlations in a
new way. The identification of functional subgraphs in neu-
ronal cultures is critical for designing experiments that pro-
mote computational tasks within neural networks, and should
find applications generally in other complex systems. Addi-
tional information and examples can be found in [9]. We
thank G. W. Gross for sharing his extensive expertise with
neuronal cultures and J. Crutchfield, A. Gutfriend, and A.
Hagberg for helpful discussions. This work is supported by
LANL’s LDRD project 20050411ER.
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