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Since Pecora and Carroll’s seminal work [1], much has
been written about the potential usefulness of chaotic syn-
chronization in communication systems (e.g., [2]). Much of
the impetus for chaotic communications has been the ratio-
nale whereby both analog and digital chaotic modulations
would have the same properties as conventional spread spec-
trum techniques [2].

The inherent wideband characteristic of chaotic signals,
however, becomes a problem when the communication chan-
nel imposes bandwidth limitations. Because of the receiver’s
nonlinear nature, if any spectral component is amiss, all
spectral components at the receiver become affected. Even
minute gain or phase changes are enough to fully hinder syn-
chronism [3].

Rulkov and Tsimiring [3] and Eisencraft and Gerken [4]
independently proposed a method for synchronizing trans-
mitter and receiver using chaotic signals under bandwidth
limitations. The basic idea is to apply an identical filter on
both the transmitter and the receiver subsystems in order to
circumvent channel impairments. In [5] we have extended
this method to discrete-time dynamical systems. Much of the
interest in this approach lies in the ease of employing Digital
Signal Processors (DSPs) or microcontrollers for their imple-
mentation. The proposed scheme is shown in Figure 1.

In this scheme, the information signal m(n) is coded us-
ing the xk+1 component of the transmitter state vector x via
a coding function s(n) = c (xk+1,m(n)), so that the in-
formation signal can be decoded using the inverse function
m(n) = d (xk+1, s(n)) = d (xk+1, c (xk+1,m(n))).

If the channel frequency response HC(ω) and the filters in
the feedback loop HS(ω) are identity systems, i.e., HC(ω) =
HS(ω) = 1, for every ω, we have shown in [5] that transmit-
ter and receiver synchronize and m′(n) → m(n) provided
that all the eigenvalues of the matrix A are inside the unit
circle. However, if HC(ω) is a lowpass or highpass filter
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Figure 1 – Discrete-time communication system for bandlimited
channels proposed in [5].

with cut-off frequency ωc we still can attain synchronization
and recover m(n) in the receiver if the cut-off frequency ωs

of HS(ω) is chosen adequately so that the frequency band
affected by HC(ω) is previously attenuated. Figures 2 and
3 show examples of transmitted and received signals in the
time and frequency domain, respectively when the Hénon
map [5] is used.

Although this approach has worked satisfactorily, numer-
ical experiments have shown that depending on the filters
employed, the generated signals can cease to be chaotic or
diverge. It has also remained to formally prove that transmit-
ter and receiver synchronizes independently of the chosen
HS(ω).

In the present paper we provide an analytical demonstra-
tion that synchronization is not affected when identical, lin-
ear, time-invariant, Finite Impulse Response (FIR) filters [5]
are included in both the transmitter and receiver subsystems.
Furthermore, we numerically investigate for which filter’s or-
ders and cut-off frequencies it is possible to obtain chaotic
signals. One of our preliminary results is shown in Figure 4.
In this figure, we show how the maximum Lyapunov expo-
nent h of the transmitter system varies with the cut-off fre-
quency ωc when HS(ω) is a lowpass N th-order FIR filter.
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Figure 2 – Examples of transmitted and received signals in time
domain for a lowpass channel with ωc = 0.8π and ωs = 0.7π:
(a) message m(n); (b) transmitted signal s(n); (c) received sig-
nal r(n); (d) recovered message m′(n) [5].
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Figure 3 – Examples of transmitted and received signals in fre-
quency domain for a lowpass channel with ωc = 0.8π and
ωs = 0.7π: (a) message m(n); (b) transmitted signal s(n) and
frequency response of the channel (dashed line); (c) received
signal r(n); (d) recovered message m′(n) [5].

As chaos is characterized by h > 0, we can easily see for
which values of these parameters we have chaotic signals.
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Figure 4 – Preliminary analysis on the variation of the max-
imum Lyapunov exponent h when HS(ω) is a lowpass N th-
order FIR filter with cut-off frequency ωc.
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