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1. INTRODUCTION

Over the past several years, the Computational Aero-
dynamics Laboratory of Instituto de Aeronáutica e Espaço
(IAE) has been developing CFD solvers for two and three di-
mensional systems [1]. One research area of the development
effort is aimed at the implementation of high-order methods
suitable for problems of interest to the Institute, i.e., exter-
nal high-speed aerodynamics. The group have implemented
essentially non-oscillatory (ENO) and weighted essentially
non-oscillatory (WENO) schemes in the past [2]. However,
both classes of methods were found to be very demanding
on computational resources for resolution orders greater than
three, in 2-D, or anything greater than 2nd order, in 3-D. This
fact motivated the consideration of the spectral finite volume
method (SFV), as proposed by Wang [3], as a more efficient
alternative. The numerical solver is currently implemented
for the solution of the 2-D Euler equations in a cell centered
finite volume context for triangular meshes, with a lower up-
per symmetric Gauss-Seidel (LU-SGS) scheme for time in-
tegration.

2. NUMERICAL FORMULATION

In the present work, the 2-D Euler equations are solved
considering the finite volume context, as in Ref. [2]. The
authors assume that the computational mesh is always com-
posed of triangular elements. For a given order of spatial
accuracy, k, using the SFV method, each SVi element must
have at least

m =
k(k + 1)

2
(1)

degrees of freedom. This corresponds to the number of con-
trol volumes that SVi shall be partitioned into. Once the cell-
averaged conservative variables vector, q, is available for all
CV s within SVi, a polynomial, pi(x, y) ∈ P k−1, with de-
gree k − 1, can be reconstructed to approximate the q(x, y)

Table 1 – Polynomial base functions.

Reconstruction Order e
linear [ 1 x y ]

quadratic [ 1 x y x2 xy y2 ]
cubic [ 1 x y x2 xy y2 x3 x2y xy2 y3 ]

function inside SVi, i.e.,

pi(x, y) = q(x, y) +O(hk−1), (x, y) ∈ SVi, (2)

where h represents the maximum edge length of all CVs
within SVi. Note that this polynomial approximation is valid
within SVi and some numerical flux coupling is necessary
across SV boundaries. As the numerical flux integration in
the present paper is based on one of the forms of a Riemann
solver, this is the mechanism which introduces the upwind
and artificial dissipation effects into the method, making it
stable and accurate. The authors have used the Roe method
[4] to compute the numerical flux. A first order implicit LU-
SGS time-march algorithm is used for temporal discretiza-
tion since we are interested in steady-state problems.

3. DATA RECONSTRUCTION

For the SFV method reconstruction one needs to partition
a SV following Eq. (1) and use the polynomial expansion
base vector as defined in Table 1. The partitions used in this
work are presented in Fig. 3. Moreover, for the Euler equa-
tions, it is necessary to limit some reconstructed properties
in order to maintain stability and convergence of the simula-
tion, if the resulting flowfield contains discontinuities. A To-
tal Variation Bounded (TVB) limiter technique is employed.

4. NUMERICAL RESULTS

4.1. Wedge Flow

The computation of the supersonic flow field past a wedge
with half-angle θ = 10 deg is considered. The computational
mesh has 816 nodes and 1504 volumes and it is shown in Fig.
2, along with the density contours obtained with 4th-order
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Figure 1 – Triangular spectral volume partitions for (a) linear,
(b) quadratic and (c) cubic reconstructions.

SFV method. For comparison purposes, the second, third and
fourth order SFV methods were utilized along with WENO
schemes. The numerical solutions of the SFV method are
in good agreement with the analytical solution. In Fig. 3
we compare the numerical solutions of the SFV and WENO
schemes, in terms of pressure coefficient values, with the an-
alytical one. Note that the SFV scheme is the one that better
approximates the jump in pressure on the leading edge.

Figure 2 – Supersonic wedge flow unstructured mesh with den-
sity distribution obtained with 4th order SFV.

Figure 3 – Supersonic wedge flow analytical and numerical wall
pressure coefficient distributions.

4.2. NACA 0012 Airfoil

For the NACA 0012 airfoil simulation, the flow condi-
tions are freestream Mach number of M∞ = 0.8 and 0
deg. angle-of-attack. The mesh has 8414 elements and 4369
nodes. Figure 4 shows the Cp plots of the numerical sim-
ulations for both WENO and SFV methods of 3rd and 4th

order orders. Their agreement with the experimental data, in
terms of shock position and pressure coefficient (Cp) values,
is very reasonable.

(a) third order (b) fourth order

Figure 4 – Experimental (black line), SFV (blue line) and
WENO (red line) Cp distributions at shock position for NACA
0012 airfoil.

5. REMARKS

The method behavior for resolution orders greater than
two is shown to be in good agreement with both experimental
and analytical data. Furthermore, the results obtained show
that the current method can yield solutions with the same or
better quality, at a much lower computational resource usage,
than other high order schemes, as indicated by the compar-
ison with the WENO scheme. The method seems suitable
for the aerospace applications of interest to IAE in the sense
that it is compact, given the fact that the stencil for polyno-
mial reconstruction is always known, geometrically flexible,
by supporting unstructured meshes, and computationally ef-
ficient.
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