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An effectively two-dimensional (2D) version of the prob-
lem of rotating fluid droplets can be examined when a fluid
drop is placed in the spatially confined environment of a ro-
tating Hele-Shaw cell. The rotating Hele-Shaw problem is a
variation of the traditional viscosity-driven Saffman-Taylor
instability [1], in witch a cell composed of two narrowlly
spaced parallel plates rotates, and the competition between
centrifugal and capillary forces results in interface destabi-
lization and pattern formation [2].

A suggestive variant of the usual rotating Hele-Shaw
problem considers that the spinning fluid is a magnetic fluid,
a superparamagnetic liquid witch promptly responds to even
modest magnetic stimuli. Two different kind of magnetic flu-
ids can be considered: ferrofluids [3] and magnetorheologi-
cal (MR) fluids [4]. In contrast to ferrofluids witch are col-
loidal suspensions containing nanometersized magnetic par-
ticles, MR fluids consist of much larger, micronsized parti-
cles. Ferrofluids generally behave like Newtonian liquids,
while MR fluids can respond elastically to deformations due
to the presence of long magnetic particle chains, presenting a
magnetic field-dependent yield stress [5]. The properties of
these kinds of fluids turn out to be very handy since it intro-
duces the possibility of controlling the rotating fluid interface
by tuning an external magnetic field.

In this work we study theoretically the family of steady
shapes witch arise when a magnetic liquid droplet is confined
in a rotating Hele-Shaw cell, and subjected to an azimuthal
magnetic field produced by a current carrying wire. As in
Refs. [6, 7] we apply a vortex-sheet formalism at an equilib-
rium situation and derive the nonlinear ordinary differential
equation for the in-plane curvature of the static droplet inter-
face
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where r is the polar radius and ψ is the angle between the

radius vector and the tangent vector at the interface. The co-
efficients b, c, d, e and f are related to dimensionless physical
parameters, and a is a constant of integration. The physical
contributions taken into account in Eq. (1) include the rotat-
ing driven centrifugal force, capillary forces due to surface
tension, the magnetic force produced by the external applied
field and also a magnetic field-dependent yield stress.

Figure 1 – Fully nonlinear stationary patterns of magnetic fluid
droplets confined in a rotating Hele-Shaw cell under the influ-
ence of an applied azimuthal magnetic field. Two different types
of fluids are considered: (a) ferrofluids and (b) MR fluids.

Various stationary patterns are obtained by solving Eq. (1)
for different sets of parameters and by imposing the commen-
surability of the droplet interface. Two distinct scenarios are
contrasted: first, the magnetic fluid is assumed to be a Newto-
nian ferrofluid of negligible yield stress (Fig. 1(a)), and then
it is taken as a viscoelastic magnetorheological fluid by the
inclusion of a magnetic-induced yield stress (Fig. 1(b)). The
influence of distinct material properties of the fluids on the
ultimate morphology of the emerging stationary patterns is
then scrutinized.

Curiously, some of the exact steady structures we found
are similar to the advanced time patterns obtained by existing
time-evolving numerical simulations [8]. Impelled by this
fact, we have employed a second-order perturbative mode-
coupling approach to gain analytical insight about the stabil-
ity of such shape solutions and its connection with the time
evolution of the unperturbed droplet. We present the evolu-
tion of the interface perturbation in terms of its Fourier am-



plitudes
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where n labels the harmonic modes of the perturbation
ζ, the overdot represents a total derivative with respect to
time, λ(n) denotes the linear growth rate, and the func-
tions F (n, n′) and G(n, n′) are second order mode-coupling
terms.

In this context, the approximate interface evolution ob-
tained with a weakly nonlinear analysis can be compared
with the exact stationary solutions. We discuss to what extent
a few perturbative orders can account for the entire exact pat-
tern and hence, a certain truncation in the number of Fourier
modes involved can be regarded as a good representation of
the exact shapes.
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