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Intrinsic stickiness in open integrable billiards: border effects
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Using the example of an integrable billiard model we
show here that therounded shapeof the open set (the es-
cape point or hole) induces stickiness and chaotic decays
for the escape times statistics and self-similar structures for
the escape times and emission angles. Rounded borders are
common in experiments with semiconductors devices [1] and
quantum cavities [2], where the borders have a shape very
similar to those shown in Fig. 1, which is the model used
here (Type I and II). What is the effect of rounded open sets
on the dynamics ? Recent works in this direction analyzed
the effect of thewidth of the open set on the escape rates of
particles in open billiards [3]. The ETs statistic is definedby
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Figure 1 – The rectangular billiard, with dimension L × D,
showing borders Type I (with radius R) and II (radius r ≈

R/20) considerer here. The escape point lies exactly in the mid-
dle of the billiard and has constant aperturea = 1 × 10−4.
Initial angle θ0 and, schematically, the shortest escape trajec-
tories (P,E,A2 and A4) are shown. In all simulations we use
L = 4 andD = 10.

[4] Q(τ) = limN→∞

Nτ

N
, whereN is the total number of

trajectories which escape the billiard andNτ is the number
of trajectories which escape the billiard after the timeτ . For
systems with stickiness the ETs statistic decays as a power
law Q(τ) ∝ τ−γesc , whereγesc > 1 is the scaling expo-

nent. For hyperbolic chaotic systems and long times the ETs
statistic decays exponentially.

In the simulations particles start from the escape point
with an initial angleθ0 towards the inner part of the bil-
liard. We use105 initial conditions distributed uniformly in
the interval0.10 ≤ θ0 ≤ 1.54. Results forQ(τ) are shown
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Figure 2 – (Color online) Behavior ofQ(τ) for different values
of the ratio R/L.

in Fig. 2 for R/L = 0, 1/10000, 1/1000, 1/100, 1/10, 1.
First observation is that forR/L = 0, Q(τ) did not have
a power law. This is the integrable case and the maximal ET
found isτ ∼ 5.7 × 102. For very small rounding effects,
R/L = 1/10000, the qualitative behaviour ofQ(τ) starts
to change (when compared to the caseR/L = 0) for times
τ ≥ 5.7 × 102, i. e. for those trajectories which stay longer
inside the billiard. The fitted escape exponent isγesc ∼ 0.6.
By increasing the border toR/L = 1/1000, we observe a
power law decay in Fig. 2 for timesτ ≥ 5.5 × 102. The
escape exponent isγesc ∼ 1.3. For R/L = 1/100 and
τ ≥ 3 × 103 we obtainγesc ∼ 1.8 and forR/L = 1/10
andτ ≥ 1× 103 we obtainγesc ∼ 2.1.

Figure 3 shows the ETs (τ ) and escape anglesθf plotted
as function of the initial incoming angleθ0 and for different
ratiosR/L. They were generated by using500× 500 points
in the intervals0.10 ≤ θ0 ≤ 1.54 and0.00355 ≤ R/L ≤ 1.0
[−8.0 ≤ log (R/L) ≤ 0.0]. In Fig. 3(a) each color rep-



Figure 3 – (Color online) (a) Log of the escape time and (b) emis-
sion angleθf as a function oflog (R/L) and θ0.

resents a given value of the ETs written aslog (τ). Hori-
zontal stripes with different colors are evident for a signifi-
cant range ofR/L values. Each stripe is defined by a bunch
of initial conditions which leave to the same ET and con-
sequently have the same color. For example, for some spe-
cific initial angles (θ0 ∼ 0.39, 0.56, 0.69, 0.89) we observe
dark blue stripes which correspond to very short ETs. For
R/L = 0 some of these angles areθ(n)0 = arctan
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wheren = 1, 2, 3, . . .. As n increases the ETs from the
trajectoriesA2n increase, the corresponding stripes assume
other colors (light blue→ green→ yellow) [see Fig. 3(a)]
and their widths decrease.

The emergence of the power law behavior becomes more
evident if we compare Fig. 4(a) with the emission angle be-
havior shown in Fig. 4(b). The light blue background ob-
served in Fig. 4(a), which corresponds tooneETs, has two
colors (blue and orange) in Fig. 4(b), which correspond to
two emission angles (∼ 2.1 and∼ 3.5). Stripes remem-
bering “backgammon” like stripes are visible. The sequence
of backgammon stripes in Fig. 4(a), and the corresponding
multicolor backgammon stripes from Fig. 4(b), are born at
the boundary between the blue and orange escape angles at
R/L ∼ 0. Inside the backgammon stripes the range of al-
lowed ETs increases very much (observe the number of yel-
low and red points). The dynamics involved in the emis-
sion angles inside the backgammon stripes is also impressive,
showing that tiny changes, or errors, in the initial angle may
drastically change the emission angle. The key observation
here is that the dynamicsinside the backgammon stripes is
the consequence of trajectories which collide with theinner
part of the semicircle from the escape point, generating the
power law behavior forQ(τ) (see Fig. 2).

The ETs from the long living trajectories present charac-

Figure 4 – (Color online) Magnifications from Figs. 3(a)-(b), re-
spectively.

teristic of sticky motion forR/L = 1/1000, 1/100, 1/10. In
other words, sticky motion and long living trajectories start to
occur forverysmall rounding borders. Visually such borders
are almost negligible. Take for example the border in Fig. 1,
it has a ratioR/L ∼ 1/143. Therefore rounding borders
of around0.1% from the whole billiard size are sufficient to
generate the sticky motion and change the dynamics.
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