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Intrinsic stickiness in open integrable billiards: border effects
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Hamiltonian Systems. statistic decays exponentially.
In the simulations particles start from the escape point

Using the example of an integrable billiard model wewith an initial anglef, towards the inner part of the bil-
show here that theounded shapef the open set (the es- liard. We usel0® initial conditions distributed uniformly in
cape point or hole) induces stickiness and chaotic decayhe interval0.10 < 6, < 1.54. Results forQ () are shown
for the escape times statistics and self-similar strustfwe
the escape times and emission angles. Rounded borders are .

—RI/L=1

common in experiments with semiconductors devices [1] and
quantum cavities [2], where the borders have a shape very R0
similar to those shown in Fig. 1, which is the model used 0 it
here (Type | and Il). What is the effect of rounded open sets . *E;t:éd"
on the dynamics ? Recent works in this direction analyzed 107
the effect of thewidth of the open set on the escape rates of g
particles in open billiards [3]. The ETs statistic is defirgd 107

D 10"

v Figure 2 — (Color online) Behavior of Q(7) for different values
of the ratio R/ L.

rf in Fig. 2 for R/L = 0,1/10000,1/1000,1/100,1/10, 1.

: First observation is that foR/L = 0, Q(r) did not have
Type ll a power law. This is the integrable case and the maximal ET
found isT ~ 5.7 x 102. For very small rounding effects,
R/L = 1/10000, the qualitative behaviour af)() starts
to change (when compared to the cds&. = 0) for times

T > 5.7 x 102, i. e. for those trajectories which stay longer
inside the billiard. The fitted escape exponentds. ~ 0.6.

By increasing the border t&®/L = 1/1000, we observe a
power law decay in Fig. 2 for times > 5.5 x 102, The
escape exponent ig.sc ~ 1.3. For R/L = 1/100 and

7 > 3 x 10 we obtainvy.s. ~ 1.8 and forR/L = 1/10
andr > 1 x 103 we obtainy,,. ~ 2.1.

Figure 1 — The rectangular billiard, with dimension L x D,
showing borders Type | (with radius R) and Il (radius r =
R/20) considerer here. The escape point lies exactly in the mid-
dle of the billiard and has constant aperturea = 1 x 107%.
Initial angle 6y and, schematically, the shortest escape trajec-
tories (P, E, A2 and A4) are shown. In all simulations we use
L =4and D = 10.

[4] Q(1) = limy_, 5=, whereN is the total number of
trajectories which escape the billiard and is the number
of trajectories which escape the billiard after the timd-or

Figure 3 shows the ETs) and escape anglés plotted
as function of the initial incoming angk® and for different
ratiosR/L. They were generated by usifg0 x 500 points

systems with stickiness the ETs statistic decays as a powarthe intervalg).10 < 6y < 1.54and0.00355 < R/L < 1.0

law Q(7) o 7 7=, where~.,. > 1 is the scaling expo-

[-8.0 < log(R/L) < 0.0]. In Fig. 3(a) each color rep-



10.0

8.0

6.0

4.0

-80 -70 -60 -50 —-40 -30 -20 -10 0.0
log(R/L)

4.0

3.5

3.0

2.5

40 - 2. ) ] ] 0.03
log(R/L) R/L

-7.0 -6.0 =50

Figure 3 — (Color online) (a) Log of the escape time and (b) emis- Figure 4 — (Color online) Magnifications from Figs. 3(a)-(b), re-
sion angled; as a function oflog (R/L) and 6. spectively.

resents a given value of the ETs writtenlag (7). Hori-  teristic of sticky motion forR/L = 1/1000,1/100,1/10. In
zontal stripes with different colors are evident for a siigni  other words, sticky motion and long living trajectoriessta
cant range of/L values. Each stripe is defined by a bunchoccur forverysmall rounding borders. Visually such borders
of initial conditions which leave to the same ET and con-are almost negligible. Take for example the border in Fig. 1,
sequently have the same color. For example, for some sp#-has a ratioR/L ~ 1/143. Therefore rounding borders
cific initial angles ¢, ~ 0.39,0.56,0.69,0.89) we observe of around0.1% from the whole billiard size are sufficient to
dark blue stripes which correspond to very short ETs. Fogenerate the sticky motion and change the dynamics.

R/L = 0 some of these angles aﬁé") = arctan [52-],

wheren = 1,2,3,.... Asn increases the ETs from the The authors thank CNPqg and CAPES for financial support
trajectoriesA,,, increase, the corresponding stripes assumand FINEP (under project CTINFRA).

other colors (light blue— green— yellow) [see Fig. 3(a)]
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