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 Crop yield prediction represents an important 
instrument for making economical and technological 
decisions in agricultural production. It is also important 
for Governmental Organizations to analyze the annual 
market situation, specially those assigned to exportation. 
 
 Several studies demonstrated the advantages 
of satellite information and crop models to predict crop 
yield in extensive agricultural areas. The temporal 
resolution and low cost of satellite information derived 
from NOAA AVHRR images represents an advantage. 
However, it is difficult to distinguish land use with the 
spatial resolution obtained from these images. On the 
other hand, crop models, considering crop functioning 
have a high predictive capacity; but some input 
variables are not always available, so calibration works 
for local conditions are required. 
 
 The main objective of this study was to 
compare the predictive behavior of satellite information 
and a crop model (CERES-Maize) concerning the 
interannual variation of maize yields in the Pampas 
Region of Argentina. 
 
 We selected as study areas 5 counties of 
Buenos Aires Province with similar crop management 
conditions. In each county we processed the digital 
information derived from monthly NOAA AVHRR 
GAC images of South America and ran the Ceres-
Maize model for the period 1981-1990. 
 
 For each study area we correlated the mean 
monthly NDVI (Normalized Difference Vegetation 
Index) from October to March with observed yields of 
maize. To run the model we considered a complete 
cycle hybrid, Dekalb 3S41, and the crop management 
that characterizes the whole region. Initial soil water 
content was set according to the occurred rainfall and 

the water accumulated in the soil during 4 months 
before planting. 
 
 January NDVI values showed the better 
association with the observed yields for each county 
(R2=0.59) with a mean error of 3.91 qq/ha (Figure 1). 
There was no interaction NDVI-county, but a 
significant effect of the county. In this way we obtained 
five curves, one for each county, with the same slope 
but different y-intercepts. The differences observed in 
the y-intercepts could be related to regional climatic 
variability. 
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Figure 1: Relationship between observed and estimated yields 
(qq/ha) by January NDVI derived from NOAA-AVHRR GAC 
images. (-) 1:1. 
 
CERES-Maize predicted yields with a R2=0.76 (Figure 
2) and a mean error of 3.29 qq/ha, which represents an 
error of 8.2 %  related to the mean observed data (40.37 
qq/ha). 
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Figure 2: Linear correlation between observed and estimated 
yields (qq/ha) using the CERES-Maize model. 
 
 Comparing the results obtained with both 
methods, we observed that crop model simulation 
explained better the interannual variation of observed 
maize yields (r2=0.76 vs r2=0.59) than monthly 
NDVI. Also, comparing the Mean Absolute Error 
(MAE) and the Root Mean Square Error (RMSE) of 
both methods,  Ceres-Maize performance was better 
in estimating maize yields (Table 1). 
 
 CERES-Maize NOAA-AVHRR 
Obs. Mean 40.36 40.36 
Est. Mean 40.62 40.36 
N 45 45 
MAE 3.29 3.91 
RMSE 4.24 5.94 
r2 0.76 0.59 
Table 1 : Comparative statistics parameters. Obs. Mean = Average 
of observed yields. Est. Mean = Average of estimated yields. N = 
Number of cases. MAE = Mean absolute error. RMSE = Root  
mean square error. r2 = Regression coefficient. 
 
 The inputs necessary to run these models are 
not always available on a daily basis for the whole 
area. The satellite data, however, resumes in one 
monthly image the information needed to make the 
prediction. 
 
 We concluded that using satellite information 
together with other meteorological indexes (i.e. drought 
index) or as input for simulation models will improve 
maize yields prediction. 
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