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Abstract. Finding the maximum likelihood estimators for some distributional
parameters of intensity data in Synthetic Aperture Radar (SAR) images is a very difficult
optimisation problem due to, among other reason, the presence of several local maxima
in the objective function, the analytical intractability of the expressions involved and
numerical instabilities. A possible approach to this problem is the use of stochastic
optimisation techniques, such as simulated annealing and genetic algorithms, that do not
get trapped into local maxima hills and, thus, make it possible to deal with very general
distributions. This work shows the results of such approach in real situations, with
images obtained from urban areas.
Keywords: Remote Sensing, SAR images, multiplicative model, parameter estimation,
stochastic optimisation.

1 Introduction
Statistical tools have long been used to tackle some problems related to images. The stochastic
nature of these objects, and the excellent results frequently obtained with this statistical
approach, stimulated the development of a vast bulk of methods and techniques.

Most of these tools are based either on quite mild hypothesis (for instance, histogram
equalization that assumes no distribution at all) or on the Gaussian distribution (Wiener filter,
usual maximum likelihood classification, etc.).

Statistical modelling and parameter estimation are very important issues in the problem of
processing and analysis of SAR images. These parameters can be associated to types of targets
and, therefore, they can be used as important features for image classification.

The Gaussian distribution is so frequently used because, among other reasons, there are
many techniques associated to this hypothesis. This distribution has been used for two centuries,
and its properties are well known and many computational methods are available to deal with it.
Synthetic Aperture Radar (SAR) images can be successfully modelled by a class of distributions
that do not belong to the Gaussian distribution.



When SAR images are used, instead of optical data, the exception becomes the rule: the
Gaussian hypothesis is seldom confirmed. This is mainly due to the coherent nature of the
illumination, and the consequences of this departure range from poor results, when classical tools
are applied, to the need of studying and proposing new methods for SAR image processing and
analysis. Therefore, parameter estimation is a problem to be carefully addressed.

Among the several estimators available, the maximum likelihood ones are those with the
"best'' theoretical characteristics, like asymptotic convergence to normality, asymptotic
consistency and efficiency, etc. Therefore, it would be desirable to estimate the parameters of
distributions of SAR images data with those estimators. Nevertheless, the complexity of the
models for such images usually yields to intractable problems, both from an analytical or
numerical view point (Frery et al, 1997). To deal with that situation, the use of a stochastic
optimisation technique, that combines genetic algorithms and simulated annealing into a single
evolutionary strategy, is proposed in this work.

In Section 2 the general problem of maximum likelihood estimation is posed. The data
models for distributions of SAR images are recalled in Section 3. This Chapter also introduces
the problem of maximum likelihood estimation for the particular distributions that model SAR
images data. An overview of stochastic optimisation is given in Section 4, with a short
description of simulated annealing, genetic algorithms and the hybrid genetic annealing
algorithm. The results of the last section are applied in Section 5, to the design of an algorithm
aiming at solving the problem presented in Section 3. Experimental results are shown in
Section 0, and the conclusions are discussed in Section 6.

2 Maximum likelihood estimation problem

Given the data set { }N
iix 1==x  of N  independent samples of a random variable and the probability

distribution pF  with density pf  under the vector of real parameters ( )mpp ,,1 K=p , the
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equivalent to the problem of finding ∑ =

N

i ixf
1ˆ )(max pp .

For some particular distributions, e. g. Gaussian, the maximum likelihood estimation
problem has simple analytical and well known solutions. But if the modelling distribution is
more complex, analytical solutions may not be feasible. When faced to this situation, the analyst
has to choose between using other estimation technique (the substitution method, for instance)
and looking for optimisation tools. This is the case for the models presented in this work, and the
use of a numerical method to find the estimator vector p̂  is presented.

3 Models and inference for SAR images
Data from SAR images can be modelled as the product of two independent random components:
one due to the terrain backscatter and one due to the speckle noise. The usual model for n  looks
intensity speckle is a Gamma distribution, denoted as ),(~ nnYI Γ , with density given by
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The number of looks, namely n , can be assumed known beforehand. A possible model for
the distribution of the intensity backscatter return is the inverse generalised Gaussian, denoted as

),,(~ λγαNX I  with density

0    ,exp
)2(2

)()(
2

>





 −−= xx

x
x

K
xf

IX λ
γ

λγ
γλ α

α

α

where  αK  is the modified Bessel Function of the third kind, and parameters space
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The intensity return corresponds to the product of the aforementioned backscatter and
speckle III YXZ ⋅=  results in a distribution denoted as ),,,( nGI λγα  with density
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The above distribution has several limit cases of interest, depending on the parameters,
which are presented and discussed in Frery et al. (1997). The particular case that will be here
discussed in that corresponding to the situation 0, >− γα , 0=λ , that yields to a distribution
known as ),,(0 nGI γα , whose density is given by
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Solving the maximum likelihood problem for the data set ),,( 1 Nzz K  and the distribution
characterised by the density given above consists of maximising the following equation with
respect to both variables α  and λ

∑∑
≤≤≤≤

+−+−+
−ΓΓ

−Γ
=

Ni
i

Ni
i

n

nznzn
n
nnN

11

)()(log)1(
)()(

)(log),( γα
αγ

α
λα αl

This maximisation is the problem addressed in the next sections.

4 Stochastic optimisation
Optimisation is the search for parameters or solutions for a given problem that minimise or
maximise a certain function or functional, conditioned or not to a set of restrictions.

There is a restricted class of optimisation problems with a simple analytical solution, that can
be found by usual methods of calculus (Apostol, 1967a; Apostol, 1967b). Nevertheless such
approach is not feasible in most of the optimisation problems of real interest due to, among other
reasons, the computational complexity aspects as well as the lacking of closed analytical
expressions for the involved functions.



On the other hand, Nature is every time dealing (quite successfully) with optimisation
problems of extreme complexity. Two examples are the evolution of species and the annealing of
molten metals. In the former example living beings, mankind for instance, are exposed to natural
competition and to the influence of the environment. Those best adapted survive to keep on
fighting, wile the weaker are eliminated of the evolutive competition.

The annealing of molten metals is strongly connected to an amazing optimisation problem,
stated as the Second Law of Thermodynamics: closed systems evolve so that its entropy raises
(Hill, 1960). Each atom of a system behaves in order that this condition is satisfied. In a molten
metal, numbers of the order of 2310  atoms, in random motion, build into a single crystal, among
the almost uncountable possible arrangements, in obedience to the Second Law.

Besides being natural phenomena, the two above examples have in common the presence of
random elements. The crossover and mutation of species are affected by so many different and
fuzzy parameters that a single deterministic analysis of this problems becomes impossible and
useless. In the state transition of metals, the success of Statistical Thermodynamics over the
Laplacian deterministic approach clearly shows that such problem cannot be properly coped
without the aid of an stochastic approach. Thus, in the solution of these two formidable
optimisation problems, Nature deals with or uses randomness. That is the basis for the study of
stochastic optimisation. Without loss of generality, will we consider in the next sections only
minimisation problems.

4.1 Simulated annealing algorithms
The fundamental ideas of simulated annealing algorithms were first introduced by Metropolis et
al (1953), as a method to determine physical and chemical properties of a set of atoms in
transition to thermal equilibrium. In this seminal work this technique did not used any cooling
schedule, a central issue in annealing algorithms, since this cooling idea had no connection with
the problem under analysis. The use of the Metropolis method in the search for the solution for
more generic optimisation problems is due to Kirkpatrick et al (1983), where the concept of
cooling schedule was also introduced. Geman and Geman (1984) were the first to state an lower
bound to the temperature decay rate that guarantees the convergence of the algorithm to a global
minimum or maximum point. A basic simulated annealing algorithm is described in the next
scheme.

1 Generate initial state tx

2 Generate noise with temperature T : tr

3 Generate candidate to new state tt txc +=

4 Test the acceptance of candidate:
4.1 If candidate is accepted then cx =+1t

4.2 Else tt xx =+1

5 Decrease T
6 Goto step 2



4.2 The Metropolis algorithm
Let S  be a closed system, and X  be the set of possible states in S . Consider also Xtt ∈+1,xx ,
with associated internal energies, or cost functions, )( tE x  and )( 1+tE x . Finally, define

)()()( 1+−=∆ ttt EEE xxx .

The Transition Acceptance Probability (TAP) between the states tx  and 1+tx  is defined as



 <∆∆−

=+ else1
0)( if)))(/()(exp(

),Pr( 1
tt

tt

EtkTE xx
xx

where )(tT  is the current temperature of the process and k  is a positive constant. This
probability benefits transitions from states with larger costs to states with smaller associated
costs. Next result shows another (less intuitive) advantage of using this TAP.
Theorem 1: if all states in a system with transitions ruled by the TAP can visited at any
temperature 0>T , the set of states distribution converges to a Boltzmann-Gibbs distribution,
i.e.,
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4.3 The state visiting process
Nothing was said about the rules of visiting of states so far. This issue and the concept of cooling
schedule are the fundamental differences between the Metropolis Algorithm and simulated
annealing. In the former, a state 1+tx  is randomly selected "around" the previous state tx  with
uniform distribution among its neighbours. In a simulated annealing algorithm the selection of a
new state is done by a temperature dependent distribution. The time variation of the temperature
is the called "cooling schedule". Expressing the temperature as a monotonic decreasing function
of time, i.e. the probability density of the distribution probability that selects states in an
annealing algorithm denoted )(⋅tg , must satisfy the relation )()( ⋅→⋅ δtg  as ∞→t .

A formal approach to realisations of tg  can be found in Mendonça (1997). For the purposes

of this work, it is enough to consider that tg  depends only on the distance ttt xxx −=∆ +1

between the current and visited states, i.e., )(),( 1 ttttt gg xxx ∆=+ , and on the result stated in the
following Theorem.
Theorem 2: A sufficient and necessary condition for the convergence of an annealing algorithm
is that ∞=∆∑∞

= 0
)(

tt ttg x .

This theorem is a landmark in the theory of simulated annealing, since if establishes an
analytical tool in the design of algorithms with assured convergence.



4.4 The n-fast simulated annealing algorithm
The algorithm introduced in Geman and Geman (1984) could not be directly used due to its slow
convergence speed. This problem was overcame in Szu and Hartley (1987), with the
development of the Fast Simulated Annealing Algorithm (FSA), and further improvement was
obtained in Mendonça (1997) and Mendonça and Caloba (1997), with the n -Fast Simulated
Annealing Algorithm ( n -FSA), whose main results are highlighted in the following. Consider

• A random variable, corresponding to the state visiting distribution probability
1)1( −+= nRnR , where R  is the norm of a D -dimensional Cauchy distributed random

vector in polar co-ordinates;
• The cooling schedule for convergence n

Rn tTtT )1/()0()(, +=

Theorem 3: Let α  be the desired probability of a transition between states at a distance L  apart
at 0=t . Then the initial temperature for the cooling schedule must be

)1)))1(tan(1/(()0( 1 −−+= − n
DpLT α , where ∫ −++Γ=

ϕ
θπ

0

1sen)2/)1(/()2/)1(( dDDDp D
D , in

order to guarantee convergence.

4.5 The basic genetic algorithm
The basic structure of a genetic algorithms is presented in the next scheme. The first step of the
algorithm is the generation of a population of feasible solutions to the optimisation problem. This
population must have great diversity and must be as uniformly distributed over the space of
search as possible. Then, while the stopping criteria is not satisfied, i.e., while a "good" solution
is not found among the individuals of the population, the crossover and mutation operators are
executed.

The crossover corresponds to a binary operation between two selected individuals, yielding
to an offspring or pair of offspring. This operator is usually designed so that the offspring has as
many common good characteristics to its parents as possible. This results in an heuristic local
search procedure, since the solution found by crossover may not be too apart from its parents.

Then the offspring (or offspring) is added to the original population and from this new set of
individuals, one (or two) are removed, keeping the size of the initial population. The substitution
criteria must be coherent with the evolution of the population.

The mutation is an unary operation that corresponds to the adding of a random perturbation
in a selected individual, producing a mutant. Again, the mutant individual is added to the

1 ←P  generate initial population
2 while the stopping criteria is not satisfied

2.1 ←′′′′′ ),( aa  crossover ),,( Paa ′′

2.2 ←P  substitution_criterion_1 ),,( Paa ′′′′′

2.3 ←′b  mutation )(b

2.4 ←P  substitution_criterion_2 ),( Pb′

3 endwhile



population, and a consistent substitution criteria is used to keep its size. The substitution criteria
for mutation does not have to be the same as the one for the crossover. This loop goes on until
the stopping criteria is fulfilled.

There are some doubts related to the validity of the genetic operator of mutation. Some
serious researchers believe that the use of this operator may degenerate the algorithm to a
random exhaustive (Tanomaru, 1995). Let us now consider this question from a different point
of view.

4.6 Genetic or annealing?
Several works in simulated annealing stress the advantages of this algorithm over genetic
algorithms, and vice-versa. It is evident that certain algorithms are better suited to particular
problems than others, and this contributes to this discussions (Wolpert and Macready, 1995).

Some claimed advantages of genetic algorithms over simulated annealing are their flexibility
and ease of parallel implementations. Annealing, on the other hand, has stronger analytical
fundaments, resulting in a better understanding and control of the algorithm; it also has a
convergence proof. In general, genetic algorithms have a greater adaptability to combinatorial
problems, while continuous or piecewise continuous cost functions are better handled by
annealing algorithms.

4.7 Metropolis in genetic algorithms
Due to the difficulty in modelling the evolution of species, there are few analytical tools
involved in the study and development of genetic algorithms. In opposition, the simulated
annealing algorithms are based in Statistical Thermodynamics and, therefore, supported by
strong mathematical arguments.

If the state transition probability, i.e. the probability of substitution of an old individual by a
new one, is given by the TAP, and if the visited state, or individual generation, is such that all
states can always be visited, the state distribution will converge to a Boltzmann-Gibbs
distribution (Theorem 1).

The point now is how to ensure that all states can always be visited. The crossover genetic
operator is designed in such way that the common characteristics of its parents are preserved
and, thus, it is not suitable to yield to populational diversity. However, the mutation operator can
be easily projected to guarantee the variety in the generation of individuals. So applying TAP as
a substitution criteria between the original and the mutant individuals for the mutation operator
results in a Boltzmann-Gibbs distribution for the population, and in the convergence of the
Genetic-Metropolis Algorithm.

4.8 Annealing in genetic algorithms
Now it is possible to introduce a cooling schedule into the Genetic-Metropolis Algorithm,
resulting in a full Genetic-Annealing Algorithm. To obtain that it is enough to generate the
mutant by the addition of a perturbation under a probability distribution with the distribution



presented in Section 4.4, and an appropriate cooling schedule. Details can be found in Mendonça
(1997) and Mendonça and in Mendonça and Caloba (1997).

5 Parameter estimation for the 0
IG  distribution

The flexibility and power of the Genetic Annealing Algorithm motivated its use in the problem
of parameters estimation of the 0

IG  distribution. Forthcoming sections will present particular
aspects of the implementation of the algorithms, and the simulation results for real data.

5.1 Implementation of the algorithm
The Genetic Annealing Algorithm starts with the generation of a population of individuals. In
Frery et al (1997) parameter estimation is performed by the moments method. In this manner, the
population of estimators around this previous estimator can be generated, obtaining with a good
chance that the solution found for the maximisation of the aforementioned likelihood equation
has a greater likelihood than that of the estimator found by the moments method.

In all the tested situations, a initial population of 100 individuals (or estimators) was large
enough to find a good solution with less than 1000 generations, and all images were sub sampled
to a matrix of size 2020 × . For technical details about the images, shown in the next Figure, the
reader is referred to Frery et al (1997).

 

5.2 Representation of the population
The actual representation of parameters was (Mendonça, 1997), due to its simplicity and to the
continuous nature of the problem. The population was the generated as a 4100 × matrix,
following the scheme bellow:

α̂ γ̂ Prob. Selection Likelihood

Entry for ind. 0 • • • •
Entry for ind. 1 • • • •

… … … … …



Entry for ind. 98 • • • •
Entry for ind. 99 • • • •

The likelihood column corresponds to the value of the log-likelihood function evaluated at
the parameters in the corresponding line. The matrix is then sorted from the best to the worst
individual. It is important to observe that, due to the limited machine precision, the final values
of this column may equal infinity, and the correspondent degenerated individuals must be
discarded from the population. This results in an effective population of size N , with a few less
individuals than previously designed. Nevertheless, the number of degenerated individuals must
be small, since the estimator found by the moments method is an excellent starting point.

The column Probability of Selection is filled with a positive parameter proportional to the
difference between the correspondent value in the likelihood column plus a threshold, chosen
here as 1, and the likelihood of the worst (or last, since they are already sorted) individual. The
column is then normalised so that it sums to 1. This procedure, shown in detail in the following
equation, generates a number that will be used as a probability of selection for individuals in the
crossover and mutation operators, selecting with greater probability those individuals with a
better adaptation. Denoting the likelihood as l  and a certain threshold as d :

∑ −

=
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+−−
= 1

1
))1(()(

)1()()(Selection Prob. N

j
dNNj
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ll

5.3 Crossover operator
The first step in the application of the crossover operator is the selection of a pair of individuals,
henceforth named 1r  and 2r  (for relatives). The column with the assigned probabilities is used in
this task. First, a random number x  in the interval ]1,0[  is generated. Given the set of

probabilities 1
0}{ −

=
N
jjp , the index i  of the selected individual is ∑ −

=
−=

1

0
)(

N

j jpxui , where u  is the

unitary step function. This procedure is repeated until a pair of different individuals is selected.
The crossover itself is done by convex combination of the parents, and the offspring is

generated as shown
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where 
ii rr γα ˆ,ˆ  and ip  are the parameters γα ,  and the probability of selection of the relative i .

The log-likelihood of the offspring is evaluated, and compared to the log-likelihood of its
relatives. If it is greater than any one of them, the offspring replaces the relative with smaller
adaptation. Then, the probabilities of selection are re-evaluated, and the mutation operator is
again applied.



5.4 Mutation operator
Analogously to the crossover operator, the probabilities of selection are used to choose an
individual m  that will mutate. The mutation itself is processed in a quite similar way as in the
crossover, from an individual i  and a perturbation j : )ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( jjiimm γαγαγα += .

The log-likelihood of the mutant is evaluated, and a selection between the original individual
and the mutant is done, under the rule given in Theorem 1.

An important detail is that this operation is not used when the selected candidate to mutation
is the best individual. Such procedure is necessary since, on the contrary to a simple annealing
algorithm, there are no guarantees that the same individual will be obtained in the next
generation, so it must ensured that the best individual is not lost by mutation.

5.5 Experimental results
This section presents comparisons between the genetic annealing algorithm and the moments
method (MO for short), presented in Frery et al (1997). All images were sub-sampled to 2020 × ,
which is an immediate advantage of the proposed method over the moments, since the last need
samples of sizes as large as 100000.

The next Table summarises the results of the first and second experiments. Next figure
shows the fit of the estimated densities over the image histogram.

α̂ γ̂ Log-likelihood

MO 018.2− 807.1− 401329 124839000 2.1234378− 6.146947.2−

ML 770.1− 416.2− 317960 202774000 1.1234334− 4.2145896−

 
It is evident that in both cases the log-likelihood obtained by the optimisation procedure is

higher than that attained by the moments method. This yields to a better representation of the
data, a quite desirable feature for processing and analysis algorithms.

It is important to note that the log-likelihood in the tables is evaluated for the whole images
data set, although the ML estimator is evaluated only for a small sub-sampled set of the image
data, while the moments method uses all the available data.



6 Conclusions
This work presented a novel approach to the problem of maximum likelihood estimation for
some SAR image data distributions, based on a fusion of genetic algorithms and simulated
annealing. The results obtained are superior, in the log-likelihood sense, to those obtained by the
moments method. The method itself is more general and robust, and allows the use of smaller
samples than the moments technique.

The next step of this work will be the use of this method in the estimation of parameter of
the IG  distribution. Parallel implementations will also be considered.
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