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ABSTRACT

A baroclinic stability analysis is performed for a simple family of
zonal shear profi]es over a sphere, using a two-]éyer, quasi-gééétrophic model .
The stability properties and the structure of the most unstable waves are
qualitatively similar to those on a 8- plane. Howaver, curvature effects play
a major role in locating some of the importantvfeafures of the most unstab]é
waves. In particular, the locations of the méximum wave amplitude, maximum eddy
heat flukes, and maximum convergence of the eddy angular momentum flux are all
well correlated with the location of the maXimum excess of the vertical shear
over the minimum vaiue necessary for local instability on a sphere. Consequently
the eddy momentum flux tends to geherate a mid ]atjtudé jet‘even if there is'no
pre-existing mid latitude jet in the ,bééic state zonal flow. These findjngs'
suggest the elements needed for parameterizing'thé meridional Variatfons of

baroclinic eddy fluxes accuraté]y.



1. Introduction

It has been suggested (Stone, 1974) that the Earth's curvature might
strongly affect the.detai1ed meridional distribution of heét and mbmentum »
transports by barociinic eddies. These curvature effeéts;lwhich are not captured
in a simple g - plane analysis, may have to be includéd for a correct fofmu]ation
of heat~and momen tum transborts by baroclinic eddies and their parameterization
in atmospheric models. |

In this work we éxamine the effects of curvature on the heat and momentum
tfanéports and on the meridional structure of the most unstable baroclinic mode.
We make use of a two-Tayer, quasi-geostrophic model on a sphere and study the
stability properties of a famiTy of basic zonal wind profiles. By vgrying the
parameters in the family of profiles, we are able to draw conclusions about the
parameter dependence of the eigenfunctions' latitudinal structﬁre and the
momentum and heat transports by the baroclinic eddies. We compare our solutions
with the results of two-layer, quasiégeostrophic investigations on a g - plane -
(Phillips, 1954; Pedlosky, 1964.a, 1964.b; Stone, 1969, 1974; Simmons, 1974).

Recently Hollingsworth {1975) has also presented a study of the curvature -
effect§ using the same model as ours. His results are confined to a basic state
wind profile which varies as the cosine of the‘]atitude. Our resilts for such a
wind profile ;re in good agreemeht with Hollingsworth's, taking into account the
sohewhat different paramefef values used in the two studies. In addition our study
1nc1udé§ resu]ts- for a large number of wind profiles with different latitudinal
variations, and this has allowed us to draw a number of conclusions not possible

in Hoi]ingsworth‘s study.



2. The Mathematical Model

‘We describe the unstable baroclinic waves by means of a linearized,
quasi-geostrophic two-level model'on a sphere. The appropriate equations have
been given by Moura (1975) (his Eqs._(6.23) - (6.26) with the parameter y = 0 ).
Tﬁe quasi- geostrophic approximation formally breaks down near the equator;
but Moura (1975) showed that the unstable solutions obtained using the
balance equations do not differ significant]y.frdm thoée 6btained using the
quasi-gedstrophic equétions, because the most unstable wave ahplitudes in low
latitudes are small.

In our study we will use for the basic stafe zonal wind profile the

family given by G (u,p) = a a(p) (1 = u2) /2

(1 +5u2), where a is the

‘earth's radius, a(p) is a function of pressure, p, given at two levels, u is

'sin (latitude), and s is a parameter describiné the meridional shear. The profile
with § = 0 is a simple cos (1ét) profile, and is analogous to a profile on a

B - plane with no meridional shear. A1l the solutions we will discuss are

barotropically stable (see Appendix A).

weuseek solutions of the equations in the form:

¥(t')
S

‘ N 03(t")
= R ise -iwst') £ P> .9.}2.1.
e {exp<1s fust) T PR |3l en) | 12)

To(t)

A X O &

with s=1,2,3,...

Where

velocity potential at level 1 (upper level).

D
|

= (wi-wé)/g,difference between the streamfunctions at the upper

level (1) and lower level (3).
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] ]
¥ = (¥,+¥,)/2, mean streamfunction.
173400
T = (¢{-¢§)/4Q, difference between the geopotential at levels 1 and 3;
Q is the Earth's rate of rotation.
s = zonal wave number.
t = 2at; t is time.
o = (aytag)/da ; A= (oy-a4) /40
P:(u) = associated Legendre "polynomial®.’

We then use (2.1) in  Moura's Eqs. (6.23)-(6.26), together with

the properties of P;(u)‘(Korn & Korn, p.870), tolget:

VS = baWia + a0 Yl FCaYhat 6005, ¢ hOl £ 0 (22)

- s 5 s s s s
© = baOn,; + an®, +CnBpyz + ean-z+°‘an +'Fn1l7n+2+

+9”X3-1 + hn X:-H. }

(2.3)

S _ - . s . s '
Tn Jo Tz +in T2 + Ry + en\iyns-a + inns-a M %"W:u + (2.4)

- s
+ n,yﬁia +s Xn

TS = g, 08, + b0l (2.5)

n-1

where (.) =i, Appendix B gives the coefficients a

- ot!
as well as a discussion of the numerical solution of the problem.

n’ bn’ ... etc,



T: is eliminated from (2.4) by means of (2.5), which result is
usgd'tp substitute for Xz_] and Xi+] in (2.3). A matrix equation is
obtained in the form of AY = BY , where the matrices A and B are
given jn Appendix B. To solve this matrix equation we take the inverse
1

of A “and write j = A"'BY. The solution is obtained with Y(t') =

exp(-iot') X, by solving the ordinary eigenvalue-eigenfunction prob]ém:

-1 ‘
(eg‘cl)x =0 ‘ (2.6)

We then look for solutions for ¢ = A + iv with maximized growth
rates with respect to tﬁe zonal wave number (s), ﬁean meridional wave
number (m), énd symmetry, for fixed vaiues of w, A, and S. m"isldefined as
bne‘p]ué the number of zeros in the real part of w', between the equator and

the pole. S measures the static stability and g defined by

W

s= @Y Yo (o - 0 ) (2.7)
where v is the ratio of specific heats, ﬁ is the gas cdhstant; and‘éS is the
basic state potential temperatdre. In all our so]Etioné we will choose a3 =. 0
so that wlé.A . Consequently our solutions for the most unstable modes will
be functions of three ‘independent parameters, the vertical shear, A , the

horizontal shear, &, and the static stability, S.

Figs. 1 and 2 show the shear profiles, G] - G3 vs. latitude, used for
~our calculations far from and near neutral stability, reépective]y..The;e figufes
also slow the observed mean annual values of u at 200 mb minus u at 700 mb,
as gi?en by Oort and Rasmusson (1971), and the minimum shear neceséary on a
B - b]éne for a profile withvno‘meridional shear to be baroclinically unstable -

namely, G] - 63 = 4Qa S cos (lat)/ sin2 (1at) (Phillips, 1954, Pedlosky, 1964a).



This minimum shear was calculated using S = 0.0050, which is the annual mean
-tropospheric value of S calculated from Odrt and Rasmusson's (1971) data.
Horizonta] shear in the basic state zonal f]ow.does not seem to affect this
stability criterion significantly (Ped]osky,196hb, Stone, 1969) - i.e., the
flow on a 8 - plane is stable if and only if the shear profile is less than the
critical shear everywhere..Our results showed that this sriterion also seems.
to work quite well on a sphere, if the critical shear is taken to be a function
of latitude- i.e;, thedflow is stable if and only if the shear is less than the
local value of the criticec. shear at all 1at1tudes. It is interesting to note
that the mean annual shear for the atmcsphere coincides with the 16ca1 values of
the critical shear within the error of the observations, from 38°N up to 75°N
(ho observations are available further north).

Profiles 2 to 4 in Fig. 2 differ from the similarly numbered profiles in
Fig. 1 only in thenrespective values of A. Profiles 2, 3, and 5 in Fig. 1 have
maximum shear approximately equal to the observed maximum shear, but their
maxima are at different Tatitudes.vThese profiles all éxceed the critical shear
for instabi]ity in high 1étitudes, but fall short of_it.in Tow latitudes. Profile 4
however exceeds the critical shear only in mid-latitudes. Profiles 2 and 3 in
Fig. 2 exceed the critical shear only in polar latitudes, but by very small
amounts. Profile 4 in Fig. 2 falls short of the critical shear at all latitudes,
but approaches it vefy closely in mid-latitudes. Nevertheless this prﬁfi]e was
found to be very slightly unstable, which merely emﬁhasizes_that the stability

criterion given above is only an approximate one for non-uniform flow on a sphere.

3. - Results
We will. now discuss the numerical solutions corresponding to the profiles

illustrated in Figs. 1 and 2. These solutions are displayed in Figs. 3 - 9.
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More details of'uekso1ution for profile 2 in Fig. 1 have been given by Moura (1975);‘
Part a of each Figure shows the amplitude and phase of the most unstable geo-
potential eigenfunction at levels 1 and 3 for the profile citéd. Part b shows the
corresponding angular momentum transports and'hbrizonta].and‘Vertical heat

transports. For all the figures, the functions have been computed at every 20 of

latitude.

~ The Geopotential Eigenfunctions ¢i and ¢§

The amplitude ofthé eigenfunctions ¢i and ¢§ has two distinct
behaviors depending on whether the basic zonal profile is near or far
from neutral stability. In the latter case (part a of Fiés. 3,5,7,9),
the amp]itudes are smooth functions of 1a£itude, resembling the solutions
found by Simmons (1974) , with maxima in middle or high Jatitudes. In |
the former case (part a of Figs. 4,6,8; near the instability thresho]d),
the amplitudes oscillate rapidly between the equator.and the.pole, in
agreement with Stone‘s (1969) study. Especially in the upper layer, .
they penetrate further intg low latitudes than do those for the more
unstable profiles of U. In almost all cases there seems to.exist a
strong correlation between the location of the maximum of the amplitude
of ¢i and the latitude where the local insfabi]ity is greatest (i.e.,

2 - -2 -
where 4Qan cos(lat) {1+ ssin (lat)- %sin (Tat)} is largest, for the

family of profiles used). The peak amplitude of ¢§ tends to occur very near
the peak amplitude of ¢f:, but usually a few degrees of latitude poleward of
it. Table 1 summarizes these correlations. There is a .notable exception

for the profi]e'4_in Fig. 2, probably because the 1oca1 stability in this case
is negr]y uniform over a wide range of ]atftudes. The eigenfunctions for this

marginal case (shown in Fig. 8a) for levels 1 and 3 peak at 30°N and 69°N respectively.



In all 8 - plane analyses, the amplitudes peak near where the vertical

shear of the zonal velocity is a maximum. The simple baroclinic

‘criterion in'this case is a constant (because cos(lat.) and sinz(lat.) are'
evaluated at the coordinate origin). For a symmetric U profile, on a B-
p1ane,.the (constant) criterion is therefbre automatically exceeded most

~at the location of maximum veftical'shear of the zonal wind. The inc]usfon
of curvature (e.g., the complete variability of f)‘in'our sphef%ca] analysis
makes a clear distinction between the 1o¢ation of maximum shear and the Toca
tion of méximum excess of shear over the local criterion, a]fowing for the

proper physical conclusion to be drawn.

Angular Momentum Flux

- The momentum transport by baroclinic eddies in the g8 - plane ana]ysgs is
always against the latitudinal gradient of the basic zonal wind profile, changing
sign where the profile is a maximum. This has led to the conclusion that the.
baroclinic eddies, although not eXp]aining the formation of.jets, are-able to
maintain a pre-existing jet structure of the basic zon;1 flow (Pedlosky, 1964.b;

 Stone, 1969; Simmons, 1974).

The curvature effeéts lead to quite a different conclusion. The angular
momentuﬁ transports are po]ewards everywhere for all the>profi]es with the
exception of‘profile 4 for which there is a reversal of sign‘(see Figs. 3b-9b).
For all of the profiles, angular momentum is transported away from wheré the zonal

‘velocity’fs a méximum to higher latitudes. For the profile 4 (0 = cos3(1at.) )
there exists a tendency for jet formation at approximately 45°N (Fig. 7.b) and 30N
(Fig. 8.b) for the solutions far from neutral stability and near neutral stability,
respectively. However, fhere is a strong correlation between the location of the

maximum convergence of angular momentum flux and the latitude where the Tocal



instability is a maximum. Table I shows the specific Tocations for the profiles
used. Consequently one would expect baroclinic eddies to shift any pre-existing

jet towards the position of maximum local instability.

Horizontal and Vertical Heat Transports

The latitudinal distributions of horizontal and vertical eddy heat transports
look much alike; i.e., upward (downward) heat transport coinciding with poleward
(equatorward) horizontal eddy heat transport, with peaks at the same latitude. |
Stone (1974) noted this property for cases near neutral stability, and our results
indicate tha£ it also holds far from neufral sfabi]ity. For all the cases near
neutral stability there is a sign reversal of heat transports, located équatprward
of the maximum heat transport (see Figs. 4.b, 6.b, 8b). This sigh reversal does
not seem to occur for the solutions very far from‘neutral stability (see Figs. 5.b,
9.b), although it does still occur for the solutions moderately far from neutral
stabjlity (see Figs. 3.b, 7.b). The 16catibn‘of this sign reversal appears well

'cérrejated with the latitude where the curve of the local criteriﬁn for stability
intercepts the curves of basic zonal wind profiles. Again, profile 4 in Fig. 2

is an obvious exception to this correlation. This correlation is summarized in

Table I, and seems to reinforce the conclusion reached by Stone (1974) that

“.f.to'a first approximation the heat flux is equatorward in regions where the

local criterion for stability is satisfied, and poleward in regions where it is rot."

The locations of maximum poleward heat transport are well correlated with the
location where the Tocal instability of the basic state is largest (see Table I).
_Thése locations are even better correlated with the 1oca£ions of maximum convergence
of angular momenfum (Table I). This fact shouid be taken into account in any study
aiming at a correct parameterization of heat transports by the baroclinic eddies.

Curvature effects are very important in this respect (i.e., in locating the transport
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maxima), and neglecting them appears to have been responsible for the defective
location of this maximum in Stone's (1974) parameterization'of the meridional
variation of eddy heat fluxes by baroclinic waves. The curvature effects displace the

maxima poleward of the maxima in the basic state wind rrofile.

Meridional Scale of Baroclinic Waves

Here we shall consider the question of the meridional scale of the
most unstable baroclinic wave on a globe. Stone (1969) addressed this
question with an analysis (oﬁ a (3 -plane) for unstable waves near the
- baroclinic stability threshold, concluding that the waves have their own
internal meridional scale, given by the radius of deformation.. His
definition of the mean meridional scale is the mean separation of fhe
zeros in the real part of the comp]ex'streamfunction'in the upper']éyer,
~ between the equator and the pole. In ngs° 3.a - 9.a, this number of'v
zeros plus 1 i8 given by m (e.g., m=3 in Fig. 3.a).
In a recent numerical study, Simmons (1974) found that there are
also some §o]ufions (fér from neutral stability) for which the dominant scale is
not the radius of deformation. Guided by his numerical solutionﬁ, he
obtained an analytic formulation for a parabolic profile, valid for
baroclinic wafes far from neutral stability. The amplitudes of the streamfunctions
have a Gaussian behavior with latitude, centered at the pqsition where the zonal
profile is a maximum. These amplitude functions have meridional scales given by the
geometric mean of the radius of deformation and the distance from the equator
to pole. _ | |
In an attempt to verify the existence of these two scaies, when
cdrvaﬁure effeéts are. included, we have derived solutions (Figs. 10 - 12)
for three additional cases, in Which thé radius of deformation is just
half the value used in three of the solutions discussed earlier (Figs. 9,

-7, and 6). To accomplish this, we decreased § by a factor of 4, but képt



-10a-

the ratio S/A constant (i.e., the latitudinal shape of 4QaA'cbs (1at) [1 + Gsin2

(1at) - (S/A) sin~2

(lat):]is the same in each comparison.) The results of these
additional cases have also been included in Table I, and they verify the
conclusions reached'above concerning the correlaticn of the local stability
criterion with the properties of the dominant eigenfunctions and their eddy fluxes.

Fig. 9a shows S = 3 and m = 4, while its counterpart, Fig. 12a, shows
S = 7-and m = 10. The width of the region in which the aﬁp]itude of ¢‘] exceeds
half its maximum value decreases by a factor of 1.36 from Fig. 9a to Fig. 12a.
‘Fig; 7a shows S =5 and m = 2, while its counterpart, Fig. 11a, shows S = 11 and
m = 3. In this case the half-amplitude width decreases by a:- factor of 1.67. Thesé
two pairs of solutions are far from neufral sfabi]ity. For the other pair, which
is near neutral stability, Fig. 6a shows S = 2 and m = 5, while Fig. 10a shows
S=4andm=11. In this case the half-width of the‘amPTitude function is.not
well defined.

In all three cases the value of S is approximately doubled, in accord with
the g - plane results showing that iﬁe zonal scale is proportional to the radius
of deformation (Phillips, 1954). The values of m are alsc rcugh]& doub]éd,
implying that the mean meridional wave scale is also proportional to tﬁe radius
of deformation, in accord with Stone's (1969) resu]ts. On the other hand far
from neutral stability the half-amplitude width varies roughly Tike the square
root of the radius of deformation, in accord with Simmons' (1924) results. The
behavior of the eigenfunctions leads cne to conclude that the dominant meridional
scale is the mean wave scale near neutral stability,»but becomes the half-amplitude
width far from neutral stability, with a corresponding change in the dependence

of the dominant scale on the radius of deformation.
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'4 Conclusions

Our restlts show that the baroclinic stability problem in many respects
'is not modified by curvature‘effects. The baroclinic stability criterion on a
g - plane still hoids to a good approximation on 5 sphere, proQided that it is
apb]ied locally; -'the most unstable zonal wave-length is still proportional
to the radius of deformatioh; the unstable baroclinic waves nedr neutral
stability still have amplitudes which oscillate rapidly betweeh the equator
and the pole, with a characteristic scale roughly proporticnal to the radius
of deformation; and the unstable waves far from neutral stability still have
amplitudes which exhibit a quasi-Gaussian behavior with Tatitude, with characteristic
scale roughly proportional to the square - root of the radius of deformatidn.

Of the various basic state wind profiles which we studied, the one which |
seems to give the most realistic resu]téhfor the stfucturg of the unstable:
waves is profile 4 iﬁ Fig. 1. This profile does approximate the observed profile
in mid-latitudes (see Fig. 1). The eddy fluxes generated by the dominant unstable
wave accomﬁanyfng this prOfi]e (see.Fig. 7b) c]oge]y reéemb]e the observed fluxes
due‘to transient eddies (Qort and Rasmusson, 1971). for examp]e; there is a
poleward flux of momentum in low latitudes and an equatorward flux in high
lafitudes, wich the former being much stronger; and there is a re]ative}y small
equaforward f]uk of -heat in very low latitudes. The eigenfunctions in this case
also illustrate the most important difference between the unstable waves on a sphere
and those on'a g - plane, i.e., the eddy momentum fFlux generated on a sphere
tends to create a mid—]atitﬁde jet, even though there is'no}pre-existing' mid-
latitude jet in the basic. state wind profile.

..!Our results also establish the importance of the local stability criterion

on a‘sphere in determining the detai]ed meridional struéturé of unstable baroclinic
waves. There is a strong correlation between the location of maximum local

instability and the locations of maximum wave amplitude, maximum eddy momentum
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flug convergence, maximum poleward eddy heat transport, and maximum upward eddy
heat transport. Tﬁe meridional and Vértﬁca] eddy heat transports are closely
correlated and tend té‘change sign on the equatorward side of their maxima, at
the location where the local instability first'vanishes; Any‘parameterization
of the meridional variation of the eddy fluxes should take these properties into

account.
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Appendix A

Barotropic Stability of the Model

~ The energy equation for our model show§ that there is a possibility for
barotropic instabi]ity as well as for baroclinic instability. To study under
what condjtions barotropic_instabi]ity may be present, we derive frém the
vorticity equation (Moura's (1575) Eq. 6.23 withy = 0) the necessary criterion
for instability analogous to that first found by Lord Rayleigh (1880). With

no vertical shear (A = 0), the resulting criterion for our fgmily of profiles is

1
d _ .
Ji] a(u)l?tz rm u+2mu(]-6+25u%ﬂ dpy =0 (A:])

where

a(u) = sv/{v? [kam(]+5u2)]2}

We thusvconclude that the necessary condition.for barotropic
instability is that'ﬂé% [u#2wu(1-5+25u2)] change sign between
u= =1 and p = +1, This is the same result obtained in a g --plane analysis,
i.e., that the derivative of the total vorticity hés to change sign

between the boundaries for instability.

For all the profiles used in our study this criterion is not
satisfied. Therefore, all the pfofi]es we studied' are barotropically

stable.
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Appendix B

Numerical Solution of the Matrix Equation _i =. BY

The coefficients appearing in (2.2) - (2.5) are:

s [(-1-2w(1-6))/(n(n+1)) + §w (1~12/(n(n+1))) ((n-s+1) (n+s+1)/

a =
i ((2n+1) (20+3)) + (n-s) (n+s)/((2n-1) (2n+1)))]

b = sws (((a=2) (n-.'~]‘.)—12.)‘/ (n(n+1))) ((n—s-;l) (n-s)/((2n-3) (2n-1)))

én = §Ws(((n+2) (n+3)-12)/(n(n+1)))( £n+s+1) (n+s+2)/((2n+3) (2n+5)‘).)

d = /\8{1—2(145)/(n(n+1)) + '6(1—12/(nkn+1)))((n-s41)(n+s+1)/ :

((20+1) (20+3)) + (n=s) (a#s)/((20-1) (20+1)))]

£, Lo

g = (a-1)(a-s)/(a(2n-1))

b= (02) (nts+1)/ ((a41) (20+3))

i = 6ws((n—si‘-l)‘(n+s+l)/(‘(2r‘1+lj(2n+3)) + (n-s) (n+s)/((2n-1) (2n+1)))
i, = ‘Sws.( (n-s-1) (n-s)/ ((2n-3) (20-1)))

k= § Ws((n+s+l) (n+s+2) /((2n+3) (2n+5)))

1 = -§As((a-s-2) (a=s1) (n=5)/ ((20-5) (20-3) (2a-1)))
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- A§ [(n-s)/ (2n-1) + 6((n-s)(n-5+1)(n+s+1)/ ((2n-1)(2n+1)(2n+3)) +

Pn ©
(n-5)2(n+sy ((2n—]')2(2n+])) + (n=s-1)(n-s)(n+s+1)/ (
(20-3)(20-1)%))]

9, - -/\s.[(n+s+1)/ (2n43) + 6((n-s+2) (n¢st1) (n+s+2) ((2n+3)%(2n+5)) +
(n-s+1) (n+s+1)% ((2n+1)(2n+3)2) + (n-s)(n+s)(n+s+1Y (
(2n-1) ‘(2n+1 ) (én+3) ) )]v

ry = -SAS((n¥s1) (n#s+2) (nes+3Y ((2n43)(2n45) (2047)))

s, = =S n(n+l)

n
where S is the non-dimensional static stability and /\=(Ot]- 0(.3)/4 is
a measure of the vertical shear.

When Tf’] is eliminated between (2.4) and ¢2.5) and the resulting

equation used to substitute for Xﬁ_] and X?\H » we obtain:

[4

' S S > S _ Y S
'tngn-lan-z + (]~tnhn—]_ungn+])@n 'unhn+]@n+2 - "tn‘]n-]gn-3@n-4

) . . s '
+(bn-tn(,‘]nJhn—3ﬂn-1gn-1) -un‘]nﬂgn-])@n—Z * (an_tn(kn-1gn+]+
| {(B.1)
o, . . s
hn-11n-1) -un(‘]nﬂhn-l“nﬂgnﬂ))@n (e tikna1Pne _un(kn+]gn+3+
s

. ‘' ~S : s S
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. .
where t = gr( Spe1 = (n=sy (Sn"(2n-1)) ; ts=0 for all s

u = h/s g ==(nsH1) (S(n+1)P(2n+3))

Equations (B.1)and (2.2) can be written in matrix form as

follows:

AY = BY (B.2)

“We then solve the eigenvalue problem (2.6) for ¢ with fixed values

1

of S,w,A, s. It is necessary to truncate the matrix L\f B-in

order to solve (2.6). The convergence of the most unstable root
was obtained by Comparing its value for matrices of sizes 30x30,
36x36, and 42x42. For the solutions far from neutral stability an

6 was obtained, while for the solutions near neutral

2

agreement of 10~
stability the accuracy wés better than 10°“. In the latter case,

the convergsnce is slower ‘because the solutions oscillate mofe betvieen
u=0 and p=1. The convergence is also much'élower for U profiles which have
a more complicated u dependénce than: those-we "ﬁav‘e studied.

The matrices Y,Aand Bappearing in (B.2) are:
e : ~ - :

r 1

Y = . s n=s or n = s+l
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FIGURE LEGENDS

Fig. 1 - Membérs of the family of shear profj]es U, - 53‘= 4QéAcos (lat)(1 +
ésin? (lat)) used for the solutions far from neutral stability.
The local baroclinic stability criterion 4Qa S cos(lat)/sinz(lgﬁ)
for S = 0.005 and the observed mean annual values of U (200 mb) -
U (700 mb) (Oort and Rasmusson, 1971) are also shown.
ffg. 2 - Members of the family of shear profiles U} -0; = 4pancos (Tat) (1 +
6sin? (lat)) used for the solutions near neutral stability. The
- Tocal baroclinic stability criterion 4ea S cos(lat)/sin?(lat) for
S= 0.005 and the observed mean_annual values of U(200 mb) -

U(700 mb) (dort and Rasmusson, 1971) are also shown,

Fig. 3a - Eigenfunctions ¢; and ¢jfor the most unstable mode for the profile

2 (Fig. 1). Numerical values of the parameters are: S = 0.005;

1]

w

A = 0.01; § = 0. This mode has a =:- 0.03132 + i 0.008424;

s=4;m=3; SYM =0 (Symmetric streamfunction).

[
Fig. 3b - Angular momentum and heat transports corresponding to Fig. 3a.

Fig. 4a - Eigenfunctions ¢1_and ¢; for the most unstab]e mode for the'profile

2 (Fig. 2). Numerical values of the parameters are: S = 0.005;

w=A=0.006; 6 = 0. This mode has ¢ = - 0.01055 + i 0.0007142;

2; m=5; SYM = 0.

S
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Fig. 4b - Angular momentum and heat transports corresponding to Fig. 4a.

Fig. 5a - Eigenfunctions ¢] and ¢] for the most unstable mode for the
profile 3 (Fig. 1). Numerical values of the parameters are:

S =0.005; w = A =0.,007; 6 = 2, This mode has o = 0.009452 +

i 0.01809; s = 4; m = 4; SYM = 0.

Fig. 5b - Angular momenum and heat transports corresponding to Fig. 5a.

Fig. 6a - Eigenfunctions ¢; and ¢ for the most unstable mode for the
profile 3 (Fig. 2). Nuﬁeripa]lvalues.of the parameters are:
$ =0.005; w = A =0.002; & = 2. This mode has ¢ = - 0.003585 +
i 0.0003503; s = 2; m = 5; SYM = 0.

Fig. 6b - Angular momentum and heat transports corresponding to Fig. 6a.

' Fig. 7a - Same as Fig. 5a, but for the profile 4 (Fig. 1); S =.0.005;
w=4=0.025% 6 =-1. 0 =-0.1210 + i 0.01267; s =5; m = 2;
SYM = 0.

Fig. 7b - Angular momentum and heat transports corresponding to Fig. 7a.
Fig. 8a - Same as Fig. 5a, but for the profile 4 (Fig. 2); S = 0.005;

w=A4A=0.02; § =-1.0=-0,1087 + i 0.0004115; s = 5; m = 2;
SYM = 0.
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Fig. 8b - Angular momentum and heat tranqurfs corresponding to Fig. 8a.

Fig. 9a - Same as Fig. 5a, but for the profile 5 (Fig. 1); S = 0.005;
w=A=-0.001; 6 = -28. ¢ = 0.04293 + i 0.02188; s = 3; m = 4;

SYM =1 (Antisymmetric streamfunction).
Fig. 9b - Angular momentum and heat transporté corresponding to Fig. 9a.
Fig. 10a - Same as Fig. 6a, but-for'the profile 3 (Fig; 2 with shear

coordinate.decreased by a factor of.4). S = 0.00125; w = A = 0.0005;
§=2.0=-0.16+ 1 0.00026; s = 4; m

11; SYM = 1.

Fig. 10b - Angular momentum and heat transports corresponding tc Fig. 10a.

Fig. 11a - Same as Fig. 7a, but for the profile 4 (Fig. 1 with shear
coordinate decreased by a factor of 4); S = 0.00125; q.= A =0.00625;
§=-1.0=-0.0631 + i 0.00725;"s"= 11; m = 3; SYM = 0.

Fig. 11b -'Angular‘momentum and heat transports corresponding to Fig. 1la.

Fig. 12a - Same as Fig. %a, but for the profile 5 (Fig. 1 with shear
coordinate decreased by a factor of 4); S = 0.00125; w = A = - 0.00025;
8§ =-28. 0 =0.02617 + i 0,01362; s =7; m = 10; SYM = 0.

Fig. 12b - Angular momentum and heat transports corresponding to Fig. 12a.

Tab]g I - Location of important features of the most unstable solutions.
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