
1.Classificação INPE—COM.2/NTI 	2.Periodo 	4.Critério de Distri- 
agosto de 1975 	buição:  
	 4 

3.Palavras Chave (selecionadas pelo autor) 	 interna 	X I 
BAROCLINIC INSTABILITY, QUASI-GEOSTROPHIC, 

EFFECTS OF CURVATURE, EDDY FLUXES, 	 externa I 1 

PARAMETERIZATION 
4 

S.RelatOrio n9 	6.Data 	 7.Revisado por - 

INPE-736 -NTI/029 	9 dá setembro dá 1975 	Peter H. Stone *  
• 

8.Titulo e Sub -Titulo 	 9.Autorizado por - 

CURVATURE EFFECTS ON BAROCLINIC INSTABILITY 

Walter D. Gonzales A. 
_ 	  

10.Setor CEA 	 Codigo 4.01 	11.N9 de cOpias 

3 
12.Autoria Antonio Divino Moura e Peter H. Stone'e ) 	  

14.N9 de pãginas 

48 

15. Preço 

13.Assinatura Responsãvel 
■ol  

16.Sumãrio/Notas 

A baroclinic stability analysis is perfórmed for a simple 
family of zonal shear pro files over a sphere, using a two -layer, quasi - 
geostrophic model. The stability properties and the structure of the 
most unstable waves are quaZitatively similar to those on a 0-plane. 
However, curvature effects p/ay a major role in locating some of the 
important features of the most unstable waves. In particular, the 
locations of the maximum wave amplitude, maximum eddy heat fluxes, and 
maximum convergence of the eddy angular momentum flux are a// well 
corre lated with the location of the maximum excess of the vertical 
shear over the mínimum value necessary for local instability on a sphere. 
Consequently the eddy momentum flux tende to generate a míd-latitude 
jet even if there is no pre-existing míd latitude jet in the basic state 
zonal flow. These fíndings suggest the elements needéd for parameterizing 
the meridional variations of'baroclinic eddy fluxes accurately. 

17.0bservações Submetido para publicação no Journal ofAtmospheric 
Sciences em agosto dá 1975 (pelo M.I.T.). 

Massachusetts Institute of Technology. 



"CURVATURE EFFECTS ON BAROCLINIC INSTABILITY" 

Antonio D. Moura 1 and Peter H. Stone 

Department cif Meteorology 

Massachusetts Institute of Technology 

Cambridge, MA 02139 

August, 1975 

-nt e  Ja,.)ryNc\ () 	Afpte,50.14- ri g. 

1 On leave from and presently. at: Instituto de Pesquisas Espaciais 
12.200 -São Jose dos Campos, SP, Brazil 



ABSTRACT 

A baroclinic stability analysis is performed for a simple family of 

zonal shear profiles over a sphere, using a two-layer, quasi-geostrophic model. 

The stability properties and the structure of the most unstable waves are 

qualitatively similar to those on a 0- plane. However, curvature effects play 

a major role in locating some of the important features of the most unstable 

waves. In particular, the locations of the maximum wave amplitude, maximum eddy 

heat fluxes, and maxidum convergence of the eddy angular momentum flux are ali 

well correlated with the location of the maximum excess of the vertical shear 

over the minimum value necessary for local instability on a sphere. Consequently 

the eddy momentum flux tends to generate a mid latitude jet even if there is'no 

pre-existing mid latitude jet in the basic state zonal flow. These findings 

suggest the elements needed for parameterizing the' meridional variations of 

baroclinic eddy fluxes accurately. 
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1. Introduction 

It has been suggested (Stone, 1974) that the Earth's curvature might 

strongly affect the detailed meridional distribution of heat and momentum 

transports by baroclinic eddies. These curVature effects, which are not captured 

in a simple 0 - plane analysis, may have to be included for a correct formulation 

of heat and momentum transports by baroclinic eddies and their parameterization 

in atmospheric models. 

In this work we examine the effects of curvature on the heat and Damentum 

transports and on the meridional structure of the most unstable baroclinic mode. 

We make use of a two-layer, quasi-geostrophic model on a sphere and study the 

stability properties of a family of basic zonal wind prõfiles. By varying the 

parameters in the family of profiles, we are able to draw conclusions about the 

parameter dependence of the eigenfunctions' latitudinal structure and the 

momentum and heat transports by the baroclinic eddies. We compare our solutions 

with the results of two-layer, quasi-geostrophic investigations on a 0 - plane - 

(Phillips, 1954; Pedlosky, 1964.a, 1964.b; Stone, 1969, 1974; Simmons, 1974). 

Recently Hollingsworth (1975) has also presented a study of the . curvature 

effects using the same motlel as ours. His results are confined to a basic state 

wind.profile which varies as the cosine of the latitude. Óur resúlts for. such a 

wind profile are in good agreement with Hollingsworth's, taking into account the 

somewhat different parameter values used in te two studies. In addition our study 

includes results for a large number of wind profiles with different latitudinal 

variations, and this has allowed us to draw a number of conclusions not possible 

in Hollingsworth's study. 
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2. The Mathematical Model 

We describe the unstable baroclinic waves by means of a linearized, 

quasi-geostrophic two-level model on a sphere. The appropriate equations have 

been given by Moura (1975) (his Eqs. (6.23) - (6.26) with the parameter'y = O ). 

The quasi- geostrophic approximation formally breaks down near the equator, 

but Moura (1975) showed that the unstable solutions obtained using the 

balance equations do not differ significantly frOm those obtained using the 

quasi-geostrophic equations, because the most unstable wave amplitudes in low 

latitudes are small. 

In our study we will use 	for the basic state zonal wind profile the 

family given by 	O 	(p,p) = a a(p) 	(1 ..- p 2 ) 1 /2 	(3 +2), where a is the 

earth's radius, a(p) is a function of pressure, p, given at two leveis, p is 

.sin (latitude), and s is a parameter describing the meridional shear. The profile 

with 6 = O is a simple cos (lat) profile, and is analogous to a profile on a 

0- plane with no meridional shear. Ali the solutions we will discuss are 

barotropically stable (see Appendix A). 

We seek solutions of the equations in the torm: 

O 

x" 
= Re exp(iso. -iwst') 	E P;1 (11 ) 

n=s 

TrS1 (V) 
Ors,(V) 
ix(v) 

Tgri (ts) 
/( 2 . 1 ) 

. 

with s=1,2,3,... 

Where x = velocity potential at level 1 (upper levei). 

e = (41-4p2,difference between the streamfunctions at the upper 

level (1) and lower levei (3). 



-4b- 

	

I 	I 
= (T +T )/2)  mean streamfunction. 1 3  

T = (0 1 -4)')/42, difference between the geopotentfal at leveis 1 and 3; 

	

1 	3. 
st_ is the Earth's rate of rotation. 

s' = zonal wave number. 
e 

t = 2nt; t is time. 

w = (a l +a3 )/4n ; A  

P s (p) = associated Legendre upolynomialu. 

We then use (2.1) in 	Moura's Eqs. (6.23)-(6.26), together with 

the properties of P lsi (u),(Korn & Korn, p.870), to . get: 

	

b„ i7 	+a-r  1,7 5  + c 13.6  + en  Os 	n +'d CP + fn e sn+2 	(2.2) 
n 	n 	n 	n-2 	n 

&,5.1 

 

7S 

	

b e 	+ a, eys, + c, e +2 Y 4.-f enlgg-z+ Cire - reS 	\f7n+2 - (2.3) 

gnX,51-1hn X sn+i 

b rr 	 5 jn 1 n-2 - ‘n n 	r‘n n+z 	enle3 1 r~j (2.4) 
5 	--‘75 

n  

T s, 	9 n  ens_ i  + h n  Ons fi 
	 (2.5) 

• 	., 
where ( ) 	. Appendix g gives the coefficients a n bn' ... etc. 

at' 
as well as a discussion of the numerical solution of the problem. 
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Tn is eliminated from (2.4) by means of (2.5), which result is 

used to substitute for X
n-1 and Xn+1 in (2.3). A matrix equation is 

obtained in the form of A = BY , where the matrices A and B are 

given in Appendix B .. To solve this matrix equation we take the inverse 

of A and write 	= A-1 BY. The solution is obtained with Y(t') = 

exp(-iat') X, by solving the ordinary eigenvalue-eigenfunction problem: 

( P 11 13 -.TI ) )( 	o 	
(2.6) 

We then look for solutions for a = x + iv with maximized growth 

rates with respect to the zonal wave number (s), mean meridional wave 

number (m), and symmetry, for fixed values ofw , A, and.S. m is defined as 

Orle plus the number of zeros in the real part af 	between the equator and 

the pole. S measures the static stability and i s  defined by 

= (2) 1 /Y R 	 1Bn2 a2 	(es1 	0s2 )' 	
(2.7) 

where y is the ratio of specific heats, R is the gas constant, and .
o
s 

is the 

basic state potential temperature. In %ali our solutions we will choose a 3  = O 

so that w.E A 	. Consequently our solutions for the most unstable Modes will 

be functions of three Independent parameters, the vertical shear, A , the 

horizontal shear, 6, and the static stability, S. 

Figs. 1 and 2 show the shear profiles, G ]  - G 3  vs. latitude, used for 

our calculations far from and near neutral stability, respectively. These figures 

also sLow the observed mean annual values of G at 200 mb minus G at 700 mb, 

as given by Oort and Rasmusson (1971), and the minimum shear necessary on a 

- plane for a profile with no meridional shear to be baroclinically unstable - 

namely, G l  - G 3  = 4na S cos (lat)/ sin 2  (lat) (Phillips, 1954, Pedlosky, 1964a). 
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This minimum shear was calculated using S = 0.0050, which is the annual mean 

tropospheric value of S calculated from Odrt and Rasmusson's (1971) data. 

Horizontal shear in the basic state zonal flow does not seem to affect this 

stability criterion significantly (Pedlosky,1964b, Stone, 1969) - i.e., the 

flow on a 0 - plane is stable if and only if the shear profile is less than the 

critical shear everywhere. Our results showed that this sriterion also seems 

to work quite well on a sphere, if the critical shear is taken to be a function 

of latitude- i.e., the flow is stable if and only if the shear is less than the 

local value of the critica, shear at ali latitudes. It is interesting to note 

that the mean annual shear for the atmcsphere coincides with the local values of 

the critical shear within the error of the observations, from 38 °N up to 75°N 

(no observations are available further north). 

Profiles 2 to 4 in Fig. 2 differ from the similarly numbered profiles in 

Fig. 1 only in the respective values of A. Profiles 2, 3, and 5 in Fig. 1 have 

maximum shear approximately equal to the observed maximum shear, but their 

maxima are at different latitudes. These profiles all exceed the critical shear 

for instability in high latitudes, but fall short of it in low latitudes. Profile 4 

however exceeds the critical shear only in mid-latitudes. Profiles 2 and 3 in 

Fig. 2 exceeà the criticai shear only in polar latitudes, but by very small 

amounts. Profile 4 in Fig. 2 falls short of the critical shear at all latitudes, 

but approaches it very closely in mid-latitudes. Nevertheless this profile was 

found to be very slightly unstable, which * merelY emphasizes that the stability 

criterion given above is only an approximate one for non-uniform flow on a sphere. 

3." 	Resul ts 

We will.now discuss the numerical solutions corresponding to the profiles 

filustrated in Figs. 1 and 2. These solutions are displayed in Figs. 3 - 9. 
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More details of te solution for profile 2 in Fig. 1 have been given by Moura (1975). 

Part a of each Figure shows the amplitude and phase of the most unstable geo-

potential eigenfunction at leveis 1 and 3 for the profile cited. Part b shows the 

corresponding angular momentum transports and horizontal and vertical heat 

transports. For all the figures, the function s have been computed at every 29 of 

latitude. 

The Geopotential Eigenfunctions (11 and 4) 

	

The amplitude ofthe eigenfunctions 	and (5 	has two distinct 

behaviors depending on whether the basiC zonal profile is near or far 

from neutral stability. In the latter case (part a of Figs. 3,5,7,9), 

the amplitudes are smooth functions of latitude, resembling the solútions 

found by Simmons (1974), with maxima in middle or high latitudes. In 

the former case (part a of Figs. 4,6,8; near the instability threshold), 

the amplitudes oscillate rapidly between the equator and the pole, in 

agreement with Stone's (1969) study. Especially in the upper layer, 

they penetrate further into low latitudes than do those for the more - 
) 

unstable profiles of O. In almost ali cases there seems to exist a 

strong correlatXon between the location of the maximum of the amplitude 

of (1).1 and the latitude where the local instability is greatest (i.e., 
2 	s 	_2 

where 4naA cos(lat) {1+ dsin (lat)- -Esin (lat)) is largest, for the 

family of profiles used). The peak amplitude of 4) 3' tends to occur very near 

the peak amplitude of 41 1  , but'usually a few degrees of latitude poleward of 

it. Table 1 summarizes these correlations. There is a .notable exception 

for the profile 4 in Fig. 2, probably because the local stability in this case 

is nearly uniform over a wide range of latitudes. The eigenfunctions for this 

marginal case (shown in Fig. 8a) for •evels • and 3 peak at 30 °N and 690N respectively. 
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In ali 0 - plane analyses, the- amplitudes peak near where the vertical 

shear of the zonal velocity is a maxiMum. Th e simple baroclinic 

criterion in this case is a constant (because cos(lat.) and sin 2
(lat.) are 

evaluated at the coordinate origin). For a symmetric O profile, on a (3- 

plane, the (constant) criterion is therefore automatically exceeded most 

at the location of maximum vertical shear of the zonal wind. The inclusion 

of curvature (e.g., the complete variability of f) in" our spherical analysis 

makes a clear distinction between the location of maximum shear and the loca 

tion of maximum excess of shear over the local criterion, allowing for the 

proper physical conclusion to be drawn. 

Angular Momentum Flux  

The momentum transport by baroclinic eddies in the 0 - plane analyses  is 

always against the latitudinal gradient of the basic zonal wind profile, changing 

sign where the profile is a maximum. This has led to the conclusion thát the 

baroclinic eddies, although not explaining the formation of jets, are able to 

maintain a pre-existing jet structure of the basic zonal flow (Pedlosky, - 1964.b; 

Stone, 1969; Simmons, 1974). 

The curvature effects lead to quite a different conclusion. The angular 

momentum transports are polewards everywhere for all the profiles with the 

exception of profile 4 for which there is a reversal of sign (see Figs. 3b-9b). 

For all of the profiles, angular momentum is transported away from where the zonal 

velocity is a maximum to higher latitudes. For the profile 4 (G cc cos
3
(lat.) ) 

there exists a tendency for jet formation at approximately 45 0N (Fig. 7.b) and 30°N 

(Fig. 8.b) for the solutions far from neutral stability and near neutral stability, 

respectively. However, there is a strong correlation between the location of the 

maximum convergence of angular momentum flux and the latitude where the local 
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instability is a maximum. Table I shows the specific locations for the profiles 

used. Consequently one would expect baroclinic eddies to shift any pre-existing 

jet towards the position of maximum local instability. 

Horizontal and Vertical Heat Transports  

The latitudinal distributions of horizontal and vertical eddy heat transports 

look much alike; i.e., upward (downward) heat transport coinciding with poleward 

(equatorward) horizontal eddy heat transport, with peaks at the same latitude. 

Stone (1974) noted this property for cases near neutral stability, and our results 

indicate that it also holds far from neutral stability. For all the cases near 

neutral stability there is a sign reversal of heat transports, located equatorward 

of the maximum heat transport (see Figs. 4.b, 6.b, 8b). This sign reversal does 

not seem to occur for the solutions very far from neutral stability (see Figs. 5.b, 

9.b), although it does still occur for the solutions moderately far from neutral _ 

stability (see Figs. 3.b, 7.b). The location of this sign reversal appears well 

correlated with the latitude where the curve of the local criterion for stability 

intercepts the curves of basic zonal wind profiles. Again, profile 4 in Fig. 2 

is an obvious exception to this correlation. This correlation is summarized,in 

Table I, and seerds to reinforce the conclusion reached by Stone (1974) that 

"...to a first approximation the heat flux is equatorward in regions where the 

local criterion for stability is satisfied, and poleward in regions where it is not." 

The locations of maximum poleward heat transport are well correlated with the 

location where the local instability of the basic state is largest (see Table I). 

These locations are even better correlated with the locations of maximum convergence 

of angular momentum (Table I). This fact should be taken into account in any study 

aiming at a correct parameterization of heat transports by the baroclinic eddies. 

Curvature effects are very important in this respect (i.e., in locating the transport 



maxima), and neglecting them appears to have been responsible for the defective 

location of this maximum in Stone's (1974) parameterization of the meridional 

variation of eddy heat fluxes .by  baroclinic waves. The curvature effects displace the 

maxima poleward of te maxima in the basic stata wihd profile. 

Meridional Scale of Baroclinic Waves  

Here we shall consider the question of the meridional scale of the 

most unstable baroclinic wave on a globe. Stone (1969) addressed this 

question with an analysis (on a (3 -plane) for unstable waves near the 

baroclinic stability threshold, concluding that the waves have their own 

internal meridional scale, given by the radius of deformation. His 

definition of the mean meridional scale is the mean separation of the 

zeros in the real part of the complex streamfunction in the upper layer, 

between the equator and the pole. In Figs. 30a - 9.a, this number of. 

zeros plus 1 is given by m (e.g., m=3 in Fig. 3.a). 

In a recent numerical study, Simons (1974) found that there are 

also some solutions (far from neutral stability) for which the dominant scale is 

not the radius of deformation. Guided by his numerical solutions, he 

obtained an analytic formulation for a parabolic profile, valid for 

baroclinic wafes far from neutral stability. The amplitudes of the streamfunctions 

háve a Gaussian - behavior with latitude, centered at the position where the zonal 

profile is a maximum. These amplitude functions have meridional scales given by the 

Oometric meai of the radius of deformation and the distance from the equator 

to pole. 

In an attempt to verify the existence of these two scales, when 

curvature effects are included, we have derived solutions (Figs. 10 - 12) 

for three additional cases, in which the radius of deformation is just 

half the value used in three of the solutions discussed earlier (Figs, 9, 

7, and 6). To accomplish this, we decreased S by a factor of 4, but kept 



the ratio S/A constant (i.e., the latitudinal shape of 4naA cos (lat) El + (Ssin 2  

(lat) - (S/A) sin
-2 

(lat):Iis the same in each comparison.) The results of these 

additional cases have -Aso been included in Table I, and they verify the 

conclusions reached above concerning the correlation of the local stability 

criterion with the properties of the dominant eigenfunctions and their eddy fluxes. 

Fig. 9a shows S = 3 and m = 4, while its counterpart, Fig. 12a, shows 

S = 7 and m = 10. The width of the region in which the amplitude of 	1  exceeds 

half its maximum value decreases by a factor of 1.36 from Fig. 9a to Fig. 12a. 

Fig. 7a shows S = 5 and m 	2, while its counterpart, Fig. lia, shows S = 11 and 

m = 3. In this case the half-amplitude width decreases by a factor of 1.67. These 

two pairs of solutions are far from neutral stability. For the other pair, which 

is near neutral stability, Fig. 6a shows S = 2 and m = 5, while Fig. 10a shows 

S = 4 and m =11. In this case the half-width of the amplitude function is not 

well defined. 

In ali three cases the value of S is approximately doubled, in accord with 

the 0 - plane results showing that the zonal scale is proportíonal to the radius 

of deformation (Phillips, 1954). The values of m are also roughly doubled, 

implying that the mean meridional wave scale is also proportional to the radius 

of deformation, in accord with Stone's (1969) results. On the other hand far 

from neutral stibility the half-amplitude width varies reughly like the square 

root of the radius of deformation, in accord with Simmons' (1974) results. The 

behavior of the eigenfunctions leads ene to conclude that the dominant meridional 

scale is the mean wave scale near neutral stability, but becomes the half-amplitude 

width far from neutral stability, with a corresponding change in the dependence 

of the dominant scale on the radius of deformation. 
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4 	Conclusions 

Our results show that the baroclinic stability problem in mapy respects 

is not modified by curvature effects. The baroclinic stability criterion on a 

0 - plane still holds to a good approximation on a sphere, provided that it is 

applied locally; 'the most unstable zonal wave-length is still proportional 

tosthe radius of deformation; the unstalble baroclinic waves near neutral 

stability still have amplitudes which oscillate rapidly between the equator 

and the pole, with a characteristic scale roughly proportional to the radius 

of deformation; and the unstable waves far from neutral stability still have 

amplitudes which exhibit a quasi-Gaussian behavior with latitude, with characteristic 

scale roughly proportional to the square - root of the radius of deformation. 

Of the various basic state wind profiles which we studied, the one which 

seems to give the most realistic results for the structure of the unstable 

waves is profile 4 in Fig. 1. This profile does approximate the observed profile 

in mid-latitudes (see Fig. 1). The eddy fluxes generated by the dominant unstable 

wave accompanying this profile (see Fig. 7b) closely resemble the observed fluxes 

due to transient eddies (Oort and Rasmusson, 1971). For example, there is a 

poleward flux of momentum in low latitudes and an equatorward flux in high 

latitudes, with the former being much stronger; and there is a relatively small 

equatorward flux of heat in very low latitudes. The eigenfunctions in this case 

also illustrate the most important difference between the unstable waves on a sphere 

and those on .a 0 - plane, i.e., the eddy MomentuM flux generated on a sphere 

tends to create a mid-latitude jet, even though there is no pre-existing mid-

latitude jet in the basic state wind profile. 

Our resülts also establish the importance of the local stability criterion 

on a sphere in determining the detailed meridional structure of unstable baroclinic 

waves. There is a strong correlation between the location of maximum local 

instability and the locations of maximum wave amplitude, maximum eddy momentum 



-12- 

flux convergence, maximum poleward eddy heat transport, and maximum upward eddy 

heat transport. The meridional and vertical eddy heat transports are closely 

correlated and- tend to change sign on the equatorward side of their maxima, at 

the location where the local instability firSt vanishes. Any parameterization 

of the meridional variation of the eddy fluxes should take these properties into 

account. 
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Appendix A 

Barotiopic Stability of the Model  

The energy equation for our model shows that there is a possibility for 

barotropic instability as well as for baroclinic instability. To study under 

what conditions barotropic instability may be present, we derive from the 

vorticity equation (Moura's (1975) Eq. 6.23 with Y = 0) the necessary criterion 

for instability analogous to that first found by Lord Rayleigh (1880). With 

no vertical shear (A = 0), the resulting criterion for our family of profiles is 

a(p)10 2 	dp = 0 	
• 

" 	 (A.1) 

where 

a( p ) = Syl ( v 2 [x_ sw (14. (5 11 2)12} 

We thus conclude that the necessary condition for barotropic 

instability is that Til- {p-s2wp(1-(5+2dp 2 )] change sign between 

1.1= -1 and p= +1.This is the same result obtained in a 0 -.plane analysis, 

i.e., that the *derivative of the total vorticity has to change sign 

between the boundaries for instability. 

For ali the profiles used in our study this criterion is not 

satisfied. Therefore, ali the profiles we studied are barotropically 

stable. 
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Appendix B 

Numerical Solution of the Matrix Equation AY = BY  

The coefficients appearing in (2.2) - (2.5) are: 

an  = s [(-1-2w(1-6))/(n(n+1)) + Std(1-12/(n(n+1)))((n -s+1)(n+s+1)/ 

((2n+1)(2n+3)) + (n-s)(n+s)/((2n-1)(2n+1)))] 

b
n 

= 6c0s(((n-2)(n-4)-12)/(n(n+1)))((n-s-1)(n-s)/((2n-3)(2n4))) 

c
n 

= SCOs(((n+2)(n+3)-14/(n(n+1)))((n+s+1)(n+s+2)/((2n+3)(2n+5))) 

dn  = AsU-2(1-5)/(n(n+1)) + 6(1-12/(n(n+1)))((n-s+1)(n+s+1)/ 

((2n+1)(2n+3)) + (n-s)(n+s)/((2n -1)(2n+1)))] 

e= 	b 
n 

 
n 

f 
n 	n 

g
n 

= 	(n-1)(n-s)/(n(2n-1)) 

h
n 

= 	(n+2)(n+s+1)/((n+1)(2n+3)) 

n 
= 6COs((n-s+1)(n+s+1)/((2n+1)(2n+3)) + (n -s)(n+s)/((2n- 1)( 2n+1))) 

j n  = 6tOs((n-s-1)(n-s)/((2n-3)(2n-1))) 

k
n 

= 5 cO s ((n+s+1) (n+s+2)/((2n+3)(2n+5))) 

1 = -5As((n-s-2)(n-s-1)(n-5)/((2n-5)(2n-3)(2n-1))) 
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pn = - As [(n-sy (2n-1) + 6( (n-s) (n-t+1 )(n+s+1)/ ((2n-1)(2n+1)(2n+3)) + 

(n-s) 2 (n+sy ( (2n-1 ) 2 (2n+1)) + (n-s-1)(n-s)(n+s+1)/ ( 

(2n-3)(2n-1) 2 ))] 

qn = - As [(n+s+1 y (2n+3) + ( (n-s+2) (n+s+1)(n+s+2y ((2n+3) 2 (2n+5)) + 

(n-s+1)(n+s+1) 2/ ( (2n+1)(2n+3) 2 ) + (n-s)(n+s)(n+s+1 y 

	

, 	. 

(2n-1) (2n+1)(2n+3) ))] 

r = -SAs((n+s+1)(n+s+2)(n+s+3y ((2n+3)(2n+5)(2n+7))) 

s
n 

= -5 n(n+1) 

where 5 is the non-dimensional static stabil ity and A . =(ct1 -(x.3 y4 	is 

a measure of the vertical shear. 

When T
s is eliminated between (2.4) and f2.5) and the resulting 

equation used to substitute for X s 	and Xs1 ' we obtain: 

A s 	 ,t, s 	• s 	 s 
n-1 n-2 + (1-tn h n-l -ungn+1 ) "n -un hn+1 e n+2 	"" tni n-1 9n-3' n-4 

s +(bn-tn (j n_ i hn_-+i 	o 
3 n-1 -n-1

) 
 -uni n+1 9n-1 vd n-2 ' 

 n n n-1 n+1 

h 	i 	) -u (j 	h +i 	g 	ne s + (c -t k 	h 	-u (k 	g + 
n-1 n-1 	n n+1 n-1 n+1 n+1 	 n n n-1 n+1 	n n+1 n+3 

• 	s  
i 	

„ r s 	 T s s 	 ( 	o 

	

n+1
h 
 n+1) 

)0 
n+2 	

u
n

k
n+1

hn+3
e

n+4 
- tn 1

n-1 1/411  n-4 
+ e -t 

• n n. n-1 -un l n+1 

s + (d -t q 	-u p 	)14s + (f -t r 	-u q 	l s 
- u r 

n n n-1 n n+1 T n 	n n n-1 n n+1 iT 
mn+2 n n+1

, 
 n+4 
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where tn  = gri s 	= (n-sy(Sn2 (2n-1)) 	; ts=0 for ali s 

un  .= hré sn+1  =-(n+s+l)/ (S(n+1 ) 2  (2n+3) ) 

Equations (B.1)and (2.2) can be written in matrix form as 

follows: 

Ay = By 
	

(B.2) 

We then solve the eigenvalue problem (2.6) for G.  with fixed values 

of S,w , A , s. It is necessary to truncate the matrix A
-1  B. in 

order to solve (2.6). The convergence of the most unstable root 

was obtained by comparing its value for matrices of sizes 30x30, 

36x36, and 42x42. For the solutions far from neutral stability an 

agreement of - 10-6  was obtained, while for the solUtions near neutral 

stability the accuracy was better than 10 -2 . In the latter case, 

the convergence is,slower because the solutions oscillate more bétween 

p=0 and 11.1. The convergence is aso much - slower for 0-  profiles which have 

a more complicated 1. dependence than , those'-We -have studied. 

The matrices Y,A and B appearing in (B.2) are: 
— — e 

; n 	s 	or 	n = s+1 
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FIGURE LEGENDS  

Fig. 1 - Members of the family of shear profiles U i  - U3= 42aAcos (lat)(1 + 

6sin2  (lat)) used for the solutions far from neutral stability. 

The local baroclinic stability criterion 42a S cos(lat)/sin 2 (lat) 

for S = 0.005 and the observed mean annual values of 1=1 (200 mb) - 

ti" (700 mb) (Oort and Rasmusson, 1971) are also shown. 

Fig. 2 - Members of the family of shear profiles ii - 1T 3  = 42aAcos (lat) (1 + 

6sin2  (lat)) used for the solutions near neutral stability. The 

local baroclinic stability criterion 42a S cos(lat)/sin 2 (lat) for 

S. 0.005 and the observed.Mean,annual values of U -(200 mb) - 

U(700 .  mb) (Oort and Rasmusson, 1971) are also shown. 

Fig. 3a - Eigenfunctions (I); and Wor the most unstable mode for the profile 

2 (Fig. 1). Numerical values of the parameters are: S = 0.005; 

w = A = 0.01; 6 = O. This mode has a = - 0.03132 + i 0.008424; 

s = 4; m = 3; SYM = O (Symmetric streamfunction). 

e 

Fig. 3b - Angular momentum and heat transports corresponding to Fig. 3a. 

Fig. 4a - Eigenfunctions 4) 1  and (I); for the most unstable mode for the . profile 

2 (Fig. 2). Numerical values of the parameters are: S = 0.005; 

w = A = 0.006; (5 = O. This mode has a = 	0.01055 + i 0.0007142; 

s = 2; m = 5; SYM = O. 
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Fig. 4b - Angular momentum and heat transports corresponding to Fig. 4a. 

Fig. 5a - Eigen-functions 01 and 03 for the most unstable mode for the 

profile 3 (Fig. 1). Numerical values of the parameters are: 

S = 0.005; w = A = 0.007; 6 = 2. This mode has a = 0.009452 + 

i 0.01809; s = 4; m = 4; SYM = O. 

Fig. 5b - Angular momenum and heat transports corresponding to Fig. 5a. 

Fig. 6a - Eigenfunctions • and • for the most unstable mode for the 

profile 3 (Fig. 2). Numerical values of the parameters are: 

S = 0.005; w = A = 0.002; 6 = 2. This mode has a = - 0.003585 + 

i 0.0003503; s = 2; m . 5; SYM = 0. 

Fig. 6b - Angular momentum and heat transports corresponding to Fig. 6a. 

Fig. 7a - Same as Fig. 5a, but for the proftle 	4 	(Fig. 1); S = 0.005; 

o= A = 0.0254 6 = -1. a = - 0.1210 + i 0.01267; s = 5; m = 2; 

SYM = 0. 

Fig. 7b - Angular momentum and heat transports corresponding to Fig. 7a. 

Fig. 8a - Same as Fig. 5a, but for the profile 4 (Fig. 2); S = 0.005; 

w = A = 0.02; 6 = -1. a = - 0.1087 + i 0.0004115; s = 5; m = 2; 

SYM = 0. 
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Fig. 8b - Angular momentum and heat transports corresponding to Fig. 8a. 

Fig. 9a - Same as Fig. 5a, but for the profile 5 (Fig. 1); 5 = 0.005; 

w = A = - 0.001; ó = -28. a = 0.04293 + i 0.02188; s = 3; m = 4; 

SYM = 1 (Antisymmetric streamfunction). 

Fig. 9b - Angular momentum and heat transports corresponding to Fig. 9a. 

Fig. 10a - Same as Fig. 6a, but for the profile 3 (Fig. 2 with shear 

coordinate decreased by a factor of 4). S = 0.00125; w = A = 0:0005; 

6 = 2. a = - 0.16 + i 0.00026; s = 4; m = 11; SYM = 1. 

Fig. 10b - Angular momentum and heat transports corresponding to Fig. 10a. 

Fig. lia - Same as Fig. 7a, but for the profile 4 (Fig. 1 with shear 

coordinate decreased by a factor of 4); S = 0.00125; w = A = 0.00625; 

6 = - 1. a = - 0.0631 + i 0.00725; - s =. 11; m = 3; SYM = 0. 

Fig. llb - Angular" momentum and heat transports corresponding to Fig. lia. 

Fig. 12a - Same as Fig. 9a, but for the profile 5 (Fig. I with shear 

coordinate decreased by a factor of 4); 5 = 0.00125; w = A = - 0.00025; 

6 = 

 

-28. a = 0.02617 + i 0,01362; s = 7; m = 10; SYM = 0. 

Fig. 12b - Angular momentum and heat transports corresponding to Fig. 12a. 

Table 1 - Location of important features of the most unstable solutions. 
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