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NOMENCLATURE

-+

MoK diagonal and off-diagonal elements of the Polder tensor [12]
k/u gyrotropy

CFRTE permittivity and effective permeability of region i (i = 1,2)
Ye intrinsic wave admittancé of region 1

Bi’ki depth and radial wave-numbers

0 normalized frequency

rsdsZ cylindrical coordinates

Rys Ry disk and cavity radii

K ‘ number of ports

YioT; sectors of disk edge

h magnetic substrate thickness

t disk conductor thickness

2(1;,i coupling angle at i-th port

Jn’ Yn Bessel functions of first and second kind and order n

In’ Kn special Bessel functions of first and second kind

)  summation over ail integers

n

Z summation over all non-negative integers, unless otherwise specified
m :

Ry, Ry,t normalized quantities, with respect to h

H tangential magnetic field component at i-th port






ANALYSIS OF DISK NETHORKS ON MAGNETIC SUBSTRATE

René Roberto Bonetti and Plinio Tissi

ABSTRACT - The impedance matrix of a disk n—port on magnetic substrate is determined,
fringing fields at the disk edge being included in the anqusis. The theory lends
itself well to computational implementation and numerical design, which is
demonstrated jor the synthesis of d4-port circulators.Classical results for the 3-port
etreulator are verified. Experimental evidence is presented through the construction

of a broadband 4-port eirculator.

I. INTRODUCTION

Planar network theory is becoming a powerful tool for the design of
microwave integrated circuits. When compared to other physical® structures, planar
networks offer the designer considerable freedom, due not only to their size and

shape, but also to the large variety of devices realizable from simple geometries.

A very simple shape, the disk, has already proven very useful for the
realization of junction circulators and presents interesting possibilities for

other devices.

The existing theories for planar networks [1] - [7] in general, do not
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include the fringing fields in the analysis, with consequent Timitations on the
frequency and power ranges of their applicabilitv to numerical desifn technicues. "ith
respect to this problem we quote Bosma [10]: "It is the unsolved problem of the

fringing field that makes numerical desian of circulators not yet very spectacular".

This paper presents a theory for the shielded disk n-port, which
includes fringing fields, and is therefore appropriate for the design of classical as
well as edge-guided wave circulators. The theory lends itself well to computational
implementation and numerical synthesis since the eigenfunctiéns are computed
independently of the number, positions and widths of the ports. Consequently, the

search for optimum port parameters is performed by means of relatively simple a]gorithms.

II. FORMULATION OF GEOMETRY AND BASIC HYPOTHESES

The planar network consists of a highly conducting disk placed between
two disk-shaped magnetic substrates (Fig. 2), and coupTed to K ports, arranged along
its periphery in such a way that no two ports have any. points in common (Fig..3).

The whole is confined within a concentric cylindrical cavity with perfectly conducting
walls (Fig. 1). The magnetization is in the z-direction and is restricted to the region

of the disk.

The ports are assumed to be coupled to TEM-mode striplines, each
spanning an angle zwi (i =1, 2, ..., K) at the edge of the disk. The sector coupled
to the i-th line is denoted by T The angular position of the center of the i-th port
relative to port# 1, is oy Due to the TEM-mode excitation only disk modes'with r.f.
magnetic fields parallel to the ground plates need be considered. Assuming that the

operating frequency range is given by



1/2 :
f < 1/[ 2h(u1eq) ] ()
the z-independent modes are dominant in the magnetized region (see Appendix).

ITI. FORMAL SOLUTION OF THE FIELD PROBLEM

The general expression for the z-independent  modes in the magnetized

region are the well known expansions [1]:

Egl) (r,¢) = g M . (kyr) g~Jn¢ ' (2)
Hél) (ry¢) = =j Ye ) MnFn(klr,K/u) e-jn¢ (3)
n
nJ (klr‘) . _:
KD (r0) = ¥, ] M, [_El—r— - £ Jn(klr)} e iné (4)
~where )

, « ndn(klr)

Fo(kirse/u) =3 (kir) - il e

and ' 0< z< h. In the region h + t <z < 2h + t, the fields are obtained by symmetry.

Time dependence ¢3! s understood.

The main steps in the derivation of the eigenfunctions for the outer
fields are given in the Appendix. In terms of those functions, the fields between

consecutive strips can be writen as!

1 In order to write general expressions for the fields below and above cut-off the
symbol C here means derivative with respect to the variable r. For stmplicity,
Ko and B2 stand for kzm and Bom 2 respectively.

)
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2 ’ -l
Eg ) (rs¢,z) = E % Anm Cn(kzr) CcosBoz . € ng (5.a)
2 -2 ., . -Jj
E& ) (ry¢,z) = - E ; Ao 82 ko Co (kpr) singyz.e Jne (5.b)
£(2) (r,6,2) = 3T T A 8y (kor)™) C (kpr) singyz.ne™IM 5
® 3@y J kG nm 2 2 n 2 2Z.0 ( ‘C)
HZ) (ra0,2) = wep T 1 AL (K31)7 C(kar) cosg,z.ne " (5.d)
b nm
H(2) (r6,2) = - Guespd T A K32 C!(kor) cosBpz.e M (5.e)
¢ &L nm n
where
) (har) - S0 Ly for wluye,)/?
r) - r or -
2" T YRR Tty eligeal e
. Kn(jsz ) . ' 1/2
Kn(szr) - TR In(szr} for w(uzey) < Ba
n

.

and the expansions are valid in thewhole interval 0 < z < 2h + t.

In the regionsbelow and above the striplines the fields will be assumed

to be those of pure TEM-modes as in previous works [1], [2].

The fringing fields described by (5) will, of course, be perturbed
in the neighborhood of the coupling lines, however this effect is negligible below
cut-off, which is the case of most actual devices. The eigenfunctions necessary for

operation above cut-off were introduced for completeness.
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The relationship between the two sets of mode coefficients, M, and

Anm is obtained from the continuity of Ez at the edge of the disk:

£ (Ry,0) = EL2) (R0, 2) (6)

in0<z<2h+t, ¢ ¢ T {(f =T, 24 voss K)o

The symmetry of the structure allows the inner field to be expanded

in a Fourier series in the z variable (See Fig. 4) as

£ (R L0) = 26 (9) ) [2COST) gin (pie h) cos (oo 2) (7)
where
- -jng
Eg(6) = I Map(kiy) e " (8)

The boundary condition (6) permits the identification of expansions

(5.a) and (7), which yields

Anm =0 m even | (9.a)

Anm = o sin (2h+t) Cn(klRl) Mn m odd (9.b)

Equations (9) show how the outer fields 1in the sectors Iy, are

completely determined by the inner fields.

The continuity of the tangential magnetic field component on the disk

edge provides the relationship between the coefficients Mrl and the port excitations.



We have
#{)(R1,6) + (higher order depth modes) = Hiz){R1,¢,z) (10)
for 0<z<h and ¢ € Fi.

The integration of (10) along the disk depth yields
h
1 2
F1 8 Ree.2) a2 ()
0

HO) (R, ) =
o (Ry %)
since the contribution of the higher order depth modes, which vary as cos(mrz/h)
(See Appendix) is nihil.

The integration is performed using the expansion (5.e) by eliminating
the coefficients Anm through (9). The result is
Hil)(R1,¢) = “2juey Ry-T M3 (kyRy) A eI (12)
n

in which we define the fringing function of order n as

- 2 = sing,h 2 ¢ Cplx
A=A (2, Ry, Ry, ) =— ¥ ) ST (13)
n i : 2+ m=1,3.. *2 x2 Cnlx

with

2 = wh(uye,)'?

@ =k = [or - (22 | |
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We point out that the tangential magnetic field component is given
by (12) only in the sectors Fi and is defined at the inner end of the lines, on Yio
by the port excitation Hi' The inversion of expansion (3) yields
1§ ips (1) ipe
My, = j(2rY _F ) ) H. e dé + HY 7(Ry,0) '™ d¢ (14)
P ep 129 i )
¥ T

p=20, 1, 22, ..

Substituting (12) in this equation and defining

{1/
;
b [ exp [sp(orop)] | (15)
-¢1 :
K
T = L[ e [36e-me] as (16)
AR B
1“1- .
we obtain
klR]_ 52 . . K
]
FR o — LA M o J (kiRy) = 7 izl Hy by (17)
p =0, %1, £2,

This set of equations, together with (9), completely solves the field
problem for a TEM-coupled disk on a general magnetic substrate when the fringing

fields are taken into account.
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IV. NATURAL FREQUENCIES

In the uncoupled case, by = 0(i=1, 2,..., K}, hence

. 0 p#n
T =
np
211p=n
bpi =0 allp,i.

Equation (17) then yields:

Mn [Fn(klRl’ K'/U) = 2k1R1 (Ez/él )An (Q, ng Rz, t)J (klRl)] = 0 (]8)

If the ratio Ry/h is such that the fringing function is negligible

(see Fig. 5), then the resonance condition coincides, as expected, with the classical

one [1].
. nd (kyR;) .
Jn (klRl} --]_-1- . —-—-rl-R-l———'— I D (]9)

Let (K/u)on be the unperturbed value of the gyrotropy at resonance of
mode n, found as a root of (19). From (18) we find that the effect of the fringing
fields will be to shift this value to

2(kiRy)%e,
beundy, = (K/u)on S Ay (20)



= 9w

When the exterior modes are below cut-off the fringing function is

positive (Figs. 5, 6), therefore the resonances of the positive modes (n > 0) will

be shifted to lower values of girotropy and the negative ones to higher values (Fig.

The isotropic resonances of the degenerate modes will then be shifted to Tower
frequencies, which is in agreement with the results found in [9] for the particular

case of R, = =, t=0, e, = g1, x/u = 0.

V. IMPEDANCE MATRIX

P

In this section a relationship between the port voltages and currents
at the disk reference planes is first derived followed by the determination of the

impedance matrix of the K-port.

To this end we introduce the following matrices

= M My oo MY

g = [t ... "

ve=[n v, ... vK]t

i=[n 1, ... IK:]t

A= diag [ s Ay cee Myl
g = diag [F-N’ F—N+1 ces FN]

. amy
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J = diag [y, J_p,q --- 9yl

y = diag [1/v1, 1z oo /0]
£=1, 2, ... 2N+]

T= [T,

= g =1,2, ... 28
t=1, &, K

B = || By,

= He=1,2, ... 281

The elements of B and T are defined by (15) and (16) respectively,

and the actual indices are related to the previous ones by £ =p + N+ 1, j=n+N+1.

The linear system defined by (17) can be written in terms of these
matrices if we neglect the contribution of modes with order greatervthan N, this
assumption implying the truncation of the infinite series down to 2N+1 terms. This
procedure allows the determination of the mode coefficient vector as

EzklR]_

)7 (21)

t3
1}
<
—_—
tm
i

I
e
=
o
tim

TE]

Voltages and currents at the i-th disk reference plane are given by

h 1 |
R [ £{") (Ru,0) o (22)
7
Tgp = = 4R ¥ H, (23)

hence



« T =

Ec

[

1
| >
i<
o
ne
t3

-

(25)

Wy
It
1
E
i~
[ —
a

By substituting (25) in (21) and the result in (24), the impedance

matrix at the disk ports is obtained as

7, =3z v 2 . 2
=d_']01=g£- ﬁEl‘glé) Eg ’ (6)

where

_h 19
Zo = j@;ﬁq; (Ul/el)

We point out that the matrices containing the information about the
number of ports, their positions and coupling angles,are completely frequency

independent. This lends to (26) a great flexibility, which is useful for design

purposes.

Describing the matching networks by their transfer parameters (Fig. 89,

we readily obtain the impedance matrix at the K—pokt reference planes as

. .
Z = (t11 Zy+ 112)(T21 Zy + T22) (27)
where

Tij " diag [Tijl, Tijar v 0 Tijk] i,J=1,2
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VI. CLASSICAL RESULTS

-

The classical expression for the input admittance of the three port
circulator is derived using the fact that the input impedance of an ideal circulator

[10] is given by

Zin =11 - 235/215 (28)

L4

In order to arrive at the results existing in the literature [11],
which were derived neglecting the fringing fields, we compute (26) retaining only

the modes n = +1, and neglecting the fringing function.

After some manipulations, we obtain

Z) 7 Z3 .
. 2siny

Z4 =32, (B0 dikiRy) | 23 21 22 (29)

2o Z3 23
where

z, = 1/Fy = V/F_,

z, = exp(j2n/3)/F - exp(-jZn/?:)/F_1

23 = p Jl

With the help of (29) and (28) we obtain for the input admittance

Ji (kR
oJu o JilkiRy) } canl

2
Yin = (32 (ogimy) {“?klRl = TR



-13 -

Expanding the Bessel functions around k;R; = 1.84 it is possible to
compare (30) to the input admittance of a shunt Toaded resonator near its center

frequency w [17]

—<
1]

6(1 + 3280,) (31)

where

(=]
n

(w - mo)/wD )

and QL is the loaded Q of the circuit.

Matching (30) to (31) we obtain

NS (=L y2 | & (32)
/3 h ‘/1—1? Sy u
Q = 0.69 |x/u|™" ) | (33)

Equations (32) and (33) coincide with the revised treatment of
Fay-Comstock [2] given by von Aulock-Fay [17]. It is interesting to remark that
their results were obtained through an independent method based on the stored
energy in the cavity. The only missing term in their expression is (y/siny)? since

the actual coupling to the lines was not considered.
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VII. CIRCULATOR SYNTHESIS

-

In this section a numerical method for the synthesis of a K-port

circulator in a symmetrical cavity is nresented.

The first step is to determine the scattering matrix at the disk
reference planes with the help of (26). The normalization impedance at these planes

must be taken as the ideal circulating impedance,

where Zin is given by (28). In order to obtain the circulation locus in the plane
(kqRys x/u) we must find the points where S11 > S31 5 -+ SK1 are essentially

zero.

The next step is to synthesize the matching netﬁorks which transform
the circulating impedance into the reference impedance at the K-port planes. The
jmpedance matrix can then be computed from (27) and the 0vera11 behavior can be
numerically optimized. In order to illustrate the above procedure the circulation
locus for a 4-port junction was determined (Fig. 9). On the same fiqure, we also
show the locus computed neglecting the fringing fields. A comparison of the two
loci shows a shift in the circulation frequencies which is of the order of 20%. A
remarkable feature of this locus is the existence of a double branch for low values
of kjRy, which is an ideal condition for the svnthesis of a broad band device.
Circulation in the upper range was earlier reported (7], [8], but as expected,

only within narrow bandwidths.
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In order to test the feasibility of broadband performance, a prototype

was designed at the center frequency operating parameters

2.1

kiR;
0.5

k/u

The input impedance computed via (28) was transformed to 50 @ with
the aid of two sections of transmission line. Experimental results and prototype

parameters are shown in Fig. 10.

VIII. CONCLUSION

A self consistent theory for the analysis of an anisotropic disk
n-port, which includes the fringing fields has been developed. Classical results
for 3-port circulators are easily derived as a particular case and agree with
previously published work. Applicability to numerical design is exemnlified with
the synthesis of a broad band 4-port circulator. Based on the results when
compared with those provided by the magnetic wall assumption, we believe that the

inclusion of the fringing fields has resulted in a more accurate theory.
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APPENDIX

The symmetry of the structure, together with Maxwell's equations and

separation of variables Tleads to the following form for the fields in both regions

E(i)(r’¢’z) = Egi)(r,¢) sing.z + Egl)(r,¢) c0s8 ;2 z (A.1)
3 (re.2) = H{ (rs6) coss,z (i=1,2) (R.2)

where Et and ﬂt are parallel to the ground plane. Onlv the modes without r.f.

magnetic field in the z direction are being considered.

Substitution of (A.1) and (A.2) into Maxwell's equations leads to

Helmoltz's homogeneous equation for EZt

(w2 + %) LD (re) = 0 (A.3)

K= o e - 8% S o(i=1,2) (A.4)
In cylindrical coordinates (A.3) yields thg éigenfunctions

. (kir) ™ N for r < Ry

J, (kar) e"ne, Y (kor) g Ind ' for Ry <r <Ry

The depth wave number Bé, determined by the boundary conditions
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ELI)(r,¢.h)X z = Etzl(r,¢,2h+t)x z=0

are

w
[}

im mm /h (A.5)

mr/(2h+t) m=0, £1, +2,... .. (A.6)

w
n

2m

The integer m defines the order of the depth mode. The cut-off
frequency w, ~of the m-th depth mode in region i is, from (A.4),
_ -1/2
Oim = Bim (Hie4)
The sign of k; and k, for the modes below cut-off must be chosen so
that the respective eigenfunctions correspond to a decaying field in the radial
direction (inwards in medium 1 and outwards in medium 2). This condition leads to
the choice of |

-1/2

_ _ifa? _ .2 1/2 -
ki = -3(8) - wiuyeg) when oo < Bylugey)

The knowledge of the EZt function allows the determination of the

field components through the application of Maxwell's equations to (A.1) and (A.2).

The eigenfunctions of the zero-th order depth mode of region 1 were determined in

[]] and are displayed in Section I of this work. For the outer region we obtain

2)

3£

e(2) _ -2 zt :

“ram = Fom Kg ar L
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Eéﬁ% = B ;2 Eiégi SinBZmz
Hiﬁ% = -Juez (Bzmtanazmz)'1 Eii%
Héi% = Jw€2’(82mtanszmz)'1 Egi%
where the Egi)(r,¢) I ,
Egi)(r $) =_[§n(k2r) - ;E%;%gg; Yn(kzr)} Q- dne

in order to satisfv the boundary condition

E£2)(R2s¢’:z) = EiZ)(BZs‘bsz) =0

Wlhen the radial wave number k, is imaginary,itis more convenient
for numerical purposes, to compute the special Bessel functions instead of Bessel

functions of imaginary argument. Therefore, for the modes below cut-off we have

K (§ ko Ro) .
£2)(r,0) = [Kn(j ko r) - TTTG"E;‘EETT L (5 ke ,n):l LT
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FIGURE CAPTIONS

-

Fig. 1 - Schematic of general 4-port network, launchers and top cover
removed.
Fig. 2 - Cross section of cavity.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

(=)]

- Conductor disk geometry and referencé planes.

Behaviour of the z component of electric field at the disk edge

(first depth mode only),

Variation of fringing functions up to second order with

normalized freguency and normalized radius as parameter.

Variation of fringing function of first order with normalized

radius, and normalized frequency as parameter.

General behaviour of first resonances of mode +n (— magnetic

wall [1], --- Eq. (20), J (x,) = 0).
Transmission parameters of the matching network at i-th port.
Circulation locus of symmetric 4-port anisotropic networks

(—- magnetic wall assumption, --- fringing fields included,

for Rl = 35, R2 =']5.).



Fig. 10 - Experimental results obtained with prototype 4-port circulator.
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