( e
1.Classification INPE-COM.10/PE 2.Period 4 ,Distribution 1
c.D.U, 539.2 Criterion

..

>

3.Key Words (selected by the author) internal

ELECTRON CORRELATION IN NARROW BANDS

external X

L JL ﬁ‘

5.Report No. 6.Date 7 .Revised bgz?z ]

INPE-1347-PE/164 SuguEty LA Ronald Ranvaud J'

[ Wr )
8. Title and Sub-title 9.Authorized by

QUASI-PARTICLE ENERGY OF THE HUBBARD MODEL IN

THE WEAK CORRELATION REGIME [i35144L¢Q6L—\
Nelson de Jesus Parada

- _JL__ Director »
10.Sector DEE Code 11.No. of Copies 15
.
12.Authorship X.4. Chao <
R. Kishore 14 ,No. of Pages 13

I.C. da Curha Lima

lC A. CQM) 15.Price TJ

L'I3.Signature of first author

-t
)
16.Summary/Notes ,
We have investigated the Fedro-Wilson theory to obtain
a hterarchy of differential equations for the correlation functions. An
approximation is suggested for the truncation of the hiervarchy of

equations. The result is applied to the weakly correlated Hubbard model
to calculate the quasi-particle energy.

N
b

A

17 .Remarks This paper will be submitted to the Journal of Physics C.




QUASI-PARTICLE ENERGY OF THE HUBBARD MODEL IN THE WEAK CORRELATION REGIME

K. A. Chao*T, R, Kishore'and I. C. da Cunha Lima™.

ABSTRACT

We have investigated the Fedro-Wilson theory to obtain a hierarchy
of differential equations for the correlation functions. An
approximation is suggested for the truncation of the hierarchy of
equations. The result is apélied to the weékly correlated ﬁubbard

model to calculate the guasi—particle energy.

Department of Physics and Measurement Technology, University of

Linkoping, Linkoping, Sweden. Permanent address.

Departamento de Engenharia Espacial, Instituto de Pesquisas
Espaciais - INPE, Conselho Nacional de Desenvolvimento Cientifico

e Tecnologico - CNPq, 12.200 - Sao José dos Campos, SP., Brazil.



Since 19563 the Hubbard model (Hubbard 1963; Kanomori 1963;
Gutzwiller 1963) has been extensively used by many authors to
investigate the magnetic ordering and the metal -nonmetal transition
in narrow energy band systems. Although the general property of the
Hubbard Hamiltoﬁian is of. fundamental interest, lots of the works have
been devoted to the streong correlation limit where the magnetic and
the metal-insulator transitions are expected to occur. This area has
been so popular among the solid state physicists in recent years, that
it seems not necessary to list the detailed literéture references.

On the other hand, the Hubbard model in the weak correlation
regime-is relatively not much explored. The main reason is the tedious
mathematical manipulation encountered in the degenerate perturbation
expansion, besides the lack of confidence in the applicability of the
Hubbard model to real physical systems if the correlation is not
strong. However, recently Friedel and Sayers (1977) have calculated
the cohesive energies of the transition metals using the Hubbard model
in the weak correlation regime. Their results are quite satisfactory.

In 1975 Fedro and Wilson (1975) had developed a self-consistent
many body theory for the single particle Greens function by uéing a
commutation projection operator introduced by Kim and Wilson (1973).
When applied to the Hubbard model, their theory yielded a systematic
approach to treat the higher order effect. Kishore (1978) has
generalized the Fedro-Wilson theory and derived from it an exact
microscopic fo%mula for the transverse dynamical éusceptibility.

In this letter we will derive a recursion formula for the

essential correlation function appeared in the Fedro-Wilson theory.



Then we will pinpoint the condition under which the series expansion
of the eorrelation function derived from the recursion formula can be
truncated. Finally, we will use the result to derive the quasi-particle
energy for the Hubbard model in the weak correlation limit, not omnly
as an example to.demonstrate the usefulness of the analytical result
but also for the intrinsic theoreti&al interest in this weak
cqrrelation case which is relevant to the real systems.

We first briefly outline the theory (Fedro and Wilson 1975)
reformulated by Kishore (19?8). Let {Ai} and {Bi} be two sets of

operators which satisfy the conditions
<|_Ai:Bj:|n> = <[—Ai’Bi]>6i,j (1)

where the angular brackets denote the grand canonical ensemble
average, n=- corresponds to the commutator and n =+ corresponds to

the anticommutator. The retarted Greens function (Zubarev 1960)

- = i (2 . : 2
;3 (t) = 1ace)< (a;8,0)] > (2)
satisfies the equation of motion

: 3 - o S e
- i Gy ()= [Ai,Bi:[n>6ij5(c)+19(t)<LAi,qu(t):ln> (3

where Bj(t) is the Heisenberg representation of Bj, and the Liouville

operator L is defined as
Ly = LH,)(:I _
for arbitrary y. Here we work in a system of units with & = 1.

Following the prcjection operator formalism of Zwanzig (1960) and

of Mori (1965), we define the operator Pj by



N = P 0
.x=B.<[A., A.,B, A.,B,| > #0 5
P.x=B.<(A, xjn>/<l_J J]n> if <|_J, JJ"] $ (5)
=0 i 'A.,B. =0
it <l Jlﬂ)

Then it is easy to show that the operator P = IP, is a projection

J
operator, namely P? =P, Substituting the unit cperator {P+ (1-P)} in

front of the Bj(t) in Eq. (3), we get

_._'_a_ = o . . S ’6
i Gij(t) <LAi’Bijn>éij5.(t)+§,ﬁi9.cﬁj(t)+1e(t)<[Ai’L(l P)Bj(t)]n ,(6)

where
R, =<[a;,18,] >/<[A),B.] > (7

With the help of (1-P)Bj==0, we have

Gi (£)=(1-P)=rt— i
r—a?(l-P)e(t)Bj\t)—(l P) ~ a(t)Bj(c) 8¢ P)B(t)Bj(t). (8)

The solution of this-equation has been obtained by Fedro and Wilson

(1975) as

t
(1-2)6(t)B, (6)=i [ dt elT(l-P}L(l-P)LPe(t)Bj(t-T) - (9)

o

which on using the projection operator P can be rewritten as
{t

it(l- B
(1‘P)9(C)Bj(t) =7 ] gr oiT(1-PIL )
L

(l1-p)L ——————rG L(t=T1) (10)
B <ﬂﬁvagn> 23

Substitution of the above relaticn inte Eq. (6) yields a closed

equation for the Greens function as

[v'a}

.Rcij(t)+%f ig(T)ng(t-T)dT, (11)

. 9 = = Iy . L
1 Gij(t) = <E§l,814n>oij6(t)+ﬁml

Y



_ LT it(1-P)L, - ..
r;(8) = 10{n)<[a, Le (1 P)LBR‘]n>/<[A£,B2_[n> (12)

The Fedro-Wilson theory thus converts the calculation of higher
order Greens functions into the calculation of the correlation
functions yiz(r). As was pointed out by Fedro And Wiison, Yil(r) can be
obtained either by the perturbation expansion or by the
differential equation approach. In this letter we will investigate
in detail the differential equation approach.

Let us define

Yig(n:t) =—i6(t)<[inAi, eit(l-P)L(l—P)LB£]n>/<[}E,B£]n> (13)

Since <|:A,LBIn>=-< [:LA,B]n>, we see that Yig(l:t) =yiE(t). Taking the

time derivation of yig(n:t), we get

w0 __ n =
i vy, (i) == <[L7a;, (-p)iB ] ~6(t)/<[a B ] >

- n it(1-P)L | i
- 16(t)<[L7A,,Le (1-p)1B ] >/<[A;,B,] >

. ~n 18(1-PJL.. . N r .
+ ig(t)<|[L A;.P{le (l-P)LBR‘}_ln>/< L_AQ,BQ‘J;,

The second term at the right hand side is simply -Yig(n+1:t)‘ Applying
the projection operator to the curly bracket in the above equation, we

have
. D __ _rn B ) .
i vy, ()= <[L7A, A-PILB ] S6(e)/<[A B ] > -y;, (arlit)
(-n w K PR
+;131(\|_L Ai,Bm]n>/<]_Am,Bm:]n:»)ymz(l.t) (14)

We can now perform the time Fourier transform and obtain from

Eq. (14) the recursion formula



wTil(u:m) =-< |:LnAi, (1-P)LB£.IT]>/< EAE’BR:[n) - Yig(rﬁl:m)
+ 2<%y, T >/<[A LB ] v, (Liw) (15)

If we define

ek v
Sn(m) - z 1 (L/w)

and use the recursion formula repeatedly, we have’

eDRAC (A58, B [ >/<[a B ] >y ,(1:w)
= <[4,,5_ () (1—P)LB£1|>/< [A,.3,1>+ -1)%;, (n+1:0) (17)

Since Yig(t)'wil(l:t), if we know Yiﬂ,(l:m) frc@ Eq. (17), we can
obtain Gij () from Eq. (11) by taking a time Fourier transform. Hence,
the applicability of the Fedro-Wilson theory lies in the possibility
of deriving a close from of yiz(n:m) for finite values n. We should
point out that the sets of operatorr {Ai} and {Bi}"are arbitrary,
provided Eq. (1) is satisfied. Therefore, if the sets {Ai}and {Bi}

are so chosen that

L(lhp)LBﬁ,:uf,LBg | (18)
for all 2, where a, is a constant, then from Eq. (13) we get

iazt _—
vy (m+lit)=-is(t) e <[L Ai,(l—P)L52]n>/< [Ai,Bg]nw (19)

So a close form of Yii(n+l:m) is derived. However, usually it is
extremely difficult to construct {Ai}and {Bi} to satisfy Eq. (19),and
therefore the exact solution of Tiﬂ.(t) can not be obtained. On the

other hand, if the Hamiltonian H can be separated into an unperturbed



part H_ and a perturbation H;, often it is not difficult to choose

{Ai} and {Bi} such that

Lo(l-P)LB.?,:aoE LBR.’ (20)

where L0 is defined through LoxE [ho,fl. Consequently Yii(n—fl:t) can
be approximated as
in Qt w1 _
vy ()= -ie()e " <[L” Ay, (1-P)LB,] >/<[a,,B ] >
and the Greens function can be solved approximately accordingly.

By now it is clear the similarity between the present app?éach
and the standard Greens function method. For the latter one truncates
the hierarchy of the equation of motion for the Greens function by
decoupling the'higher order Greéﬁs function, while for the former one
terminates the hierarchy of the differential equation for the
correlation function, namely Eq. tlé) by approximating the higher
order correlatién function. -In both methods, at which order to
truncate the hierarchy of equation depends soiely on the solvability
of the time indepgndent correlation functions involved. |

We will apply the above developed analysis to the weakly

correlated Hubbard Hamiltonian

H = Hb + Hu’ : (22)
where

H = E E(k)ak Ko (23)
and

3, = Tl\lj" k a12r+q+ At al:'—q+ qery” . (24)

qkk'



We choose {A.} = {a } and {B.} = {a? } with fixed o, and define the
1 ko 1 ko

projection operator and the Greens function as

o +

Px = 12( <l:akc,)a+>akc, | (25)
o +

kikp(t) = 18(t)<[ak10,ak20(t):]+>' (26)

So Eq. (11) becomes

= <]

—17§E- klks(t) =8 5(c)+z [@klkz Lok (t)+J wyzlkz(f)cisz(t~T)dT]f(27)
wherg

szf(lkz =.<[aK’O,La:201+> = [k +n_ U] S 1keg (28)
and

Yy 1, (8 = 10(0) < EaklG,Lei(i-PG)L-(l—I’O)LaLZO:[+>- (29)

In this letter we will-calculate the quasi-particle energy to the
second order U? in perturbation. Hence we only need to approximate the

L operator in the exponential in Eq. (29) by L, . After computing

b
o + . g "
(1-P )Lakgo’ we can rewrite Tklkz(t) as

a _ U g
where

g it(1-p)L
Yklkztk'q(t) = *18(t)<[Laklg, e X

+ N _
(ak Vig ~ok? <ak'+q,—oak',-o')akz—q,cl+> (31)



Since

t i

- _ +
(1-P )Lb(ak'+q,~cak',-o <ak+q’_0ak,,~c>)ak2‘q,o,

= {e(k ) relko e (kD Il _a _ar, A o)
’ ] ’ 3 . kz_q,o.’

when we approximate the L in the exponential of Eq. (31) by Lb’ we get

g I | it{e(k'+q)+e(k —q)-s(k'i} (32)
Vi rkyik'q(E 5T N ig(t) e ¢ .

x{((nk'—c>~<nk'+q,-o>)<nk2-q,c>'-<nk',-c>(1*<nk'+q,—u>)Jk1k2.

Substituting Eqs.. (28) and (32) into Eq. (27) and taking the time

Fourier transform, we have

o ' T
G (0 = {w=e(k)=Un__ -U% y (W} , (33)
where ;
= —_ = >
a 1 (<nk2"0 g <nk1+k2,-0>)<nk"‘kl,0> nkz;'0'>(1 <nk1+ kz_G
v W=)?% . ‘ (34)
kikz w= {e(ky+kp)+e(k-ky)-e(ky)}

The quasi-particle energy w(k) is then obtained simply from

w(k) = e(k) - Un__-U? yi {w(k)}=0. (35)

For weak correlation, i.e., small U, w(k) can be well approximated as

(k) = () + Un_ + U2y, {e(k) + Un_ )+ (36)

From Eq. (34), we see that the second order correction term
Y;{E(k)+Un_c} contains E(k)+€(kz)"e(k—kl)—e(k2+k1)—Un_0 as the energy
denominator. Physically, this energy denominator is associated to the

scattering of two electrons from the k- and the k,-Bloch states into



the (k-k;)- and the (kp+k;)-Bloch states due to the intraatomic
inte?action of strength U. Therefore, large contribution to the second
order energy comes from the scattering processes for which the initial
and the final energies differ by an amoﬁnt Unﬂg. Since U is small, the
self-energy w(k)-e(k) is épecially-important for‘those electrons in
the vicinity of the Fermi surface of Ho’ as one would expect.

We must point out that not all the second order corrections are
included in Eq. (35). This is the intrinsic drawback of the differential
equation approach for the correlation function Yig(t)' As was pointed
out 'by Fedro and Wilson (1975), one can also solve Eq. (29) with a
perturbation expansion of the exponential term. If cne does so, the
calculation of the second order correction energy becomes very
complicated and involves the almost impossible task of solving for the

time independent three-particle correlation functions.
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