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2427 Ionosphere-atmosphere

INFLUENCE OF AN INTERHEMISPHERIC PLASMA FLOW ON
THE NEUTRAL ATMOSPHERE ION-DRAG EFFECTS

C.J. Zamlutti (Instituto de Pesquisas Espaciais
INPE -~ C.P. 515, 12201 - Sao José dos Campos,
SP - Brasil)

During solstices a plasma pressure difference
exists between geomagnetic conjugate points locat
ed in the topside icnosphere. This difference is
responsible for an interhemispheric plasma flow.
Here we investigate the possibility of this in
terhemispheric plasma flow to drag along neutral
particles and to influence the neutral winds,
(Ion-drag effects, transports process, iono
spheric-atmospheric interaction. -

3369, 7859



INTRODUCTION

Interhemispheric transport of energy by a plas
ma flow has been comsidered both on theoretical
grounds (e.g. Schunk, 1975; Raitt et al., 1977;
Schunk and Watkins, 1979; Young et al., 1980) and
in its practical aspects (Bailey and Moffett,
1979). One may distinguich two states in the pro
cessa: a transient state, for which equilibrium
along the vertical at geomagnetic conjugate loca
tions has not yet been reached by ionized parti
cles, and a steady state situation, for which
such equilibrium was reached.

To consider the ion-drag effect of the plasma
flow on the neutral atmosphere, we assume that the
steady state situation was established. Under such
circunstances, along the path, the ionized partl
cles drift by the action of partial pressure gra
dient against the gravitational and frictional
forces (Banks and Holzer, 1965).

In this paper we want to determine to what ex
tent the ion-drag produced by the interhemispheric
plasma flow affects neutral winds.

THE PHYSICAL MECHANISM

During solstices the daytime summer hemisphere
receives about 207 more solar radiation than the
winter hemisphere. The resulting energy stored in
the summer hemisphere, however, ends up being
smaller than that stored in the winter hemisphere.
This peculiar situation is produced by the active
dynamics of the upper atmosphere, as follows. The
photoelectrons, produced in larger scale in the
summer hemisphere, travel along the geomagnetic
field lines so that the summer to winter flow ex
ceed the one in the reverse sense. As a result of
the collision between photoelectrons and neutral
particles, primary electrons are produced. These
electrons are high energy electrons (nmonthermal
electrons) and, colliding again with neutral par
ticles, can produce more ionization (secondary
electrons), which may eventually be nonthermal.
The ionization at the winter hemsiphere is, there
fore, constituted mostly by lower order electrons
(secondary thermal electrons). The reverse win
ter to summer) flow contains a lot of primary and
secondary nonthermal electrons, The ionization at
the summer hemisphere is then constituted by high
er order electrons (secondary, tertiary). There
fore, not only the ionization is larger in the
winter hemisphere, but also the neutral atmosphere
temperatures are larger, because of the effective
electron neutral collisional energy transfer pro
cess. The ionized particles temperatures, however,
are larger in the summer hesmisphere due to the
active electron thermalization mechanism. This
transient has been studied by Torr et al. (1980),
who considered the back and forth flow of both



nonthermal and thermal electrons between opposite
hemispheres.

Under steady state condition, the plasma pres
sure difference between opposite hemispheres
yields a meridional flow of plasma along the geo
magnetic field lines. This subject has been the
matter of a series of papers by Bailey and co-work
ers (Baileyetal., 1978, 1982; Bailey and Moffett,
1979). Additionally, an horizontal meridional wind
component produced by seasonal asymetries appears.

Seasonal winds were considered by Volland and
Mayr (1972a,b), using the method of perturbation
of the hydrodynamic equations and by Blum and
Harris (1975), who solved the equations of motion
employing atmospheric static models.

Seasonal winds affect the flow of plasma through
air-drag (King and Kohl, 1965)., Their relevance
to the plasma flow through air-drag was treated
theoretical by Banks and Holzer (1965) and experi
mentally by Salah and Holt (1974), Roble et al.
(1974, 1977) and Bittencourt and Sahai (1978).
Conversely, the flow of plasma carries the neutral
particles through a small ion-drag (King and Kohl,
1965). The ion-drag net effect on a global scale,
which is the matter of the present work, has been
incorporated in computer modelling of the neutral
atmosphere dynamics (e.g. Dickinson et al,, 1975,
1977), but sc¢ far nort determined separatelyusing
measured ionospheric and atmospheric parameters.

At low latitudes, the protonospherie link does
not significantly alter the flow of plasma  and
there plasma pressure difference between conju
gate iomospheres is quickly brought into balance
(Bailey et al., 1982). At middle latitude, the
photonosphere acts as a reservoir and its large
plasma content significantly reduces the flow of
plasma.

A SIMPLE MATHEMATICAL FORMULATION

We assume first that the geomagnetic and geogra
phic axis are coincident, We further consider that
it is possible to define an interhemispheric dy
namical equilibrium situation, for whichno plasma
transport between hemisphers occurs and which is
roughly reached during equinox.

Under nonequilibrium conditions (solstices), a
geomagnetic field alignmed plasma velocity, v, is
established between hemispheres to compensate the
pressure gradient estabilished between them. This
velocity is given by:

8v = dvgq + dug, (1}

where vq the plasma diffusion velocity along the
geomagnetic field line and ug is the neutral par
ticle velocity in the same direction, The opera
tor 6 represents the differences between the ag
tual value of the parameter and its reference val



ue for the equilibrium situation. Neglecting elec
tric fields, thermal diffusion and assuming the
validity of chemical equilibrium, the diffusion
velocity is given by:

¥4 =D [V, p/p - sin I/Hp] (2)

(Banks and Holzer, 1965). Here, D = k(T; + Tg)
(m, vy >l is the diffusion coefficient, “p = Nk
(TT + %e) is the plasma pressure, Hp = k(T3 + Te)
(m} g)~! is the plasma scale height, I is the dip
angle and Vs is the gradient operator along the
field lines. The others are the standard symbols
for electron number density (N), eletron tempera
ture (Te), ions temperature (T;), ion mass (m;),
ion-neutral collision frequency (Vip), Boltzman
constant (k) and acceleration of gravity (g).

The velocity in (1) produces and ion-drag force
which tends to carry the neutral particles from
one hemisphere to the other hemisphere. A viscos
ity reaction tendes to impede the motion. The
equilibrium is reached when:

82655X6z2 = =S8[(p/W) vnigd], (3)

where U is the viscosity coefficient, p is the
neutral particles density, vpji is the neutral-iens
collision frequency and z is the altitude,

The neutral-ion drag force is related by Newton's
Third law to the ion-neutral drag forces resulting:

oV . = Nm, v, (4)

ni 1 in

Inserting (2) and (4) into (3) we obtain:
(Bzﬁgs/azz) = -u~(sin 1) 5[Vz p+N m. gl (5)

for the nearly vertical range of the magnetic
field line,

At altitudes where sin I decreases significant
ly, a modification is expected from fluid to indi
vidual particles behavior for the ions (Banks and
Holzer, 1965). The individual ion-neutrals colli
sions are very low because of the rarefied air den
sity. Under these conditions no ion drag contrib
butes to modify the wind velocity, -

RESULTS

A consistent set of most of the necessary par
ameters, to solve Equation 5, is provided by the
incoherent scatter technique. Since there are not
two incoherent scatter radars at geomagnetic conju
gate locations a compromise solution must be con
sidered to this problem. The one chosen in this
work was to assume that the summer (winter) iono
sphere parameters at a given location are identi
cal to the summer (winter) ionospheric parameters
at its geomagnetic conjugate location. Therefore,



the data collected at one single site during one
entire year can, in principle, provide the neces
sary elements to simulate this summer-winter comn
trast existing between geomagnetic conjugated 1o
cations. B

In order to estimate the reliability of the pro
posed theory, we carried out the integration of
Expression 5 wusing numerical methods (Simpson
rule). The necessary ionospheric parameters were
obtained from the data published by Evans (1875),
For the neutral atmosphere we used the Jacchia
(1970) model with the same exosphere temperatures
of Roble et al. (1977). As boundary conditions
we assumed that the average velocity, Sug, aswell
as its first and second derivatives all vanish at
200 km, The ramaining parameters were the viscosi
ty and ion mass. For the ion mass we considered
an ion compesition varying linearly frompure atom
ic oxygen ioms at the F, layer peak to pure helium
at 650 km during daytime and to pure atomic hydro
gen lons at 700 km during nighttime (Rishbeth and
Garriott, 1969), The viscosity depends on the neu
tral atmosphere composition and is essentially
that of atomic oxygen. Our results are marked
with x in figures 1 and 2.

Another alternative method to derive the wind
velocity induced by ilon drag is the use of Expres
sion 1. This method was employed by Roble et al.
(1974, 1977), who used the component of plasma
drift aleng the geomagnetic field line, measured
with the incoherent scatter technique. Their dif
fusion velocity was computed using a slightly dif
ferent expression than our Expression 2. Moreover,
they included the thermal diffusion to compute the
diffusion velocity. The results obtained with this
approach are presented in Figures 1-4,

The results exhibit a satisfactory  agreement
considering the fact that the experimental accura
cy of wind measurements is of the order of #10m/s
{Salah and Holt, 1974), which yields and accuracy
of *¥20m/s for the difference Sug. Our results,
depending on the computations of the diffusion ve
locity, introduce an erros of #2m/s at 300 km
(Salah and Holt, 1974). Since we used numerical
integration which is an error reducingmethod, the
uncertainties tend not to grow with altitude be
cause of the increasing number of points used in
the integration. The shortcommings of our approach
are the boundary conditions imposed at 200 km,
which only hold for daytime. According to our es
timates for the whole range of altitudes, the ne
glecting of thermal diffusion does not introduce
more than 207 error in the daytime results and is
of no importance for the nighttime computations.

Another restriction of our technique is  that
Equation 3 does not consider the time wvariation
of wind speed required during sunrise and sunset.
This, however, is a complementary term which can
easily be introduced,



DISCUSSION

The poposed approach, to compute the net global
effect of ion drag on the neutral atmosphere, has
proved satisfactory as far as the order of magnl
tude is concerned. However, it has a severe in
trinsic limitation, namely, the assumption of
steady state dynamics. This may be tolerated for
daytime and nighttime (noon and midnight), but is
not true during sunrise and sumnset,

Regarding the influence of electric fields, the
reader is referred to the work by Salah and Holt
(1974). Since both the experimental and computed
values neglected their contribution, we will not
consider them further, If a detailed account of
them is required, we certainly need a more com
plete set of measurements, B

The influence of the other simplifications wun
dertaken in this work were commented in the pre
cedlng section because of their relevanceto1natch
ing computed with experimental results.

Comparing the obtained results with the winds
derived from Roble et al. (1977), we see that ion
drag effects on the wind veloc1t1es range from
roughly 207 at 300 km to as much as 807 at proton
ospheric altitudes,

CONCLUSION

A method was presented to compute the net global
effect of ion-drag on the neutral atmosphere dur
ing sclstices, The first tests performed with it
were satisfactory. The obtained results exhibit a
clear tendency for a net transport of mass between
the summer and the winter hemisphere above 300 km
with reversal of direction from day to night. The
extent of ion-drag ranges from 20%, at 300 km, to
as much as 80%Z at protonospheric altitudes,
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FIGURE CAPTIONS

Figure

Figure

Figure

Figure

1

Nighttime wind velocities produced by
summer to winter differences . in ion
drag above Millstone Hill., Positive va
lues corresponds to summer to  winter
direction, Computed values are marked

with x.

Same as
cities.
X.

Same as
cities.

Same as
cities.

figure 1 for daytime wind velo
Computed values are marked with

figure 1 for sunrise wind velo

figure 1 for sunset wind velo
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