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Wave-breaking conditions, in terms of the electron velocity or the maximum wave amplitude, of
space-charge waves in a relativistic electron beam are obtained. , The discussion includes both
negative-energy and positive-energy modes as well as wave propagation parallel and antiparallel to
the electron beam.

Space-charge waves resulting from the longitudinal
bunching of space charges in a relativistic electron beam
are of primary importance for the operation of high-
power sources of coherent radiation and high-energy col-
lective ion accelerators. For example, in conventional
Rarnan free-electron lasers, ' an instability is excited
when the negative-energy space-charge wave interacts
with the positive-energy electromagnetic wave leading to
the growth of the scattered radiation; in converging guide
ion accelerators, ions are first trapped in the potential
troughs of negative-energy space-charge waves and then
accelerated to high energy by increasing the phase veloci-
ty of the space-charge waves to near the electron-beam
velocity.

As the space-charge wave reaches large amplitudes,
higher harmonics of the fundamental wave oscillation are
generated which leads to the nonlinear steepening of the
wave. The steepening of the space-charge wave proceeds
until the wave attains a critical amplitude beyond which
wave-breaking occurs. The concept of wave-breaking
was first introduced in plasma physics to describe
the nonlinear saturation of electron plasma waves. It
was shown that, for nonrelativistic nonlinear electron
plasma waves, the wave-breaking condition is
eE,„/mco v t,

= 1, where the electron plasma frequency
co~ =(noe /m eo)' and the wave phase velocity
v ph co /k; whereas, for re lativistic non 1inear electron
plasma waves, " the wave-breaking condition is

eE,„/m conc =v 2( y h
—1 )'

It follows that the wave energy density for the space-
charge waves' is proportional to to/(co —

ut, k ) . Hence,
for the negative-energy (or slow) mode

tgj ubk + top /yb

where the minus (plus) signs refer to to) 0 (co&0), and
for the positive-energy (or fast) mode

co —vbk =+cop/yb (lb)

where plus (minus) refer to co)0 (to(0). From Eq. (1)
we see that the phase velocity of the negative-energy
mode is

CO
v h

—
Vb

co+co /yp b

(2a)

where plus (minus) refer to co) 0 (co &0), and the phase
velocity of the positive-energy mode is

r

CO
V h

—
VbP + /y3/2

(2b)

to the electron beam can also give rise to down-
conversion free-electron laser instabilities.

First, we review briefly the basic properties of the
linear dispersion relations of space-charge waves in a rel-
ativistic electron beam given by' co —vbk =+cop/p
where vb is the equilibrium electron beam velocity and

= ( 1 —2 /c 2
)
—1 /2

where

y =(1—u /c )

The aim of this paper is to determine the wave-
breaking condition of space-charge waves in a relativistic
electron beam. The discussion is generalized to include
both negative-energy and positive-energy modes. In par-
ticular, both cases of wave propagation parallel and anti-
parallel to the electron beam are treated. In conventional
free-electron lasers and wave collective ion accelerators,
the attention is usually directed toward the negative-
energy mode and wave propagation in the beam direc-
tion. However, it was shown recently that the positive-
energy space-charge wave traveling in counter direction

where minus (plus) refer to to )0 (co & 0). For the
negative-energy mode 0& vph (vb for all co, whereas for
the positive-energy mode ub & u h (+ oo if ~to~ ) to~ /yb
and —oo &v „&0 if ~to~ &to /yt, . Hence it is evident
that the negative-energy mode always propagates in the
beam direction, whereas the positive-energy mode propa-
gates in the direction opposite to the beam if

/ Qj[ (Qj~ /yg,
Before carrying out a rigorous derivation of the non-

linear dispersion relation for space-charge waves, we shall
first give a heuristic derivation that indicates the relation
between a stationary electron plasma and a relativistic
electron beam. In the beam (primed) frame in which
vb =0, the amplitude-dependent frequency of relativistic
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nonlinear electron plasma waves in a cold plasma is in-
dependent of k' and is approximately given by '

CO +CO& /Pp =++& (3)

~—Ubk =+O, /yb",
where the amplitude-dependent plasma frequency

=(noe /yomeo)'

(4)

where o2' =(noe Imeo)', yo=(1 —vo Ic ) ', and vo
is the peak electron quiver velocity. Thus the wave oscil-
lates at the proper plasma frequency 0' with the electron
rest mass m replaced by the relativistically corrected
mass yom. A Lorentz transformation of Eq. (3) to the
laboratory frame (where the beam has a velocity vb), us-

ing the relations oi'=rb(o2 —vbk) and II' =II /yb
yields the following nonlinear dispersion relation for
space-charge waves in a relativistic electron beam:

where u =yP, P=v/c, P h=v„h/c, and Pb=vb/c. The
first integral of Eq. (9) is

2
du W —r+Pb u

(1—
plpph)

(10)

Analysis of Eqs. (10) and (11) shows that u is a periodic
function of r. The turning points (i.e., du/dr=0) are
determined by setting W —y+Pou =0; thus the max-
imum and minimum of u are

u, 2=yb[pb W+( W —1/yb)' ] .

where 8 is an arbitrary constant of integration, greater
than 1/yb, that determines the amplitude of wave oscilla-
tions. A further integration of Eq. (10) gives

&z
T—+ dQ

o (W —y+/3 u)'

and

Bn + (nv)=0,
Bt Bx

BE
eo =e(no —n ),

Bx

(6)

where p =m y v, y = ( 1 —v /c ) ', and one-dimensional
fluid is considered since the wave motion of space-charge
waves is longitudinal. Seeking periodic wave solutions
which depend only on the variable r =o2 (t —x lv h ), we
obtain from Eq. (6) the following equation for the
electron-beam density:

np

Vph Vb

Vph V

where the constant of integration is chosen so that,
vb=—(nv )l(n ) and no=(n ), where ( ) denotes
averaging over a period in ~. Note that, in the nonlinear
theory, the equilibrium value of the electron-beam veloci-
ty vb has to be defined self-consistently. ' The particu-
lar choice of integration constant in Eq. (8) allows us to
study perturbations in the electron-beam density, which
differs from the previous works on the plasma wake-field
accelerator' " wherein the beam density perturbation is
neglected. Taking the ~ derivative of the momentum
equation and substituting Poisson's equation and Eq. (8),
we arrive at the following nonlinear wave equation:

d2 P
Pph ) Pph p pph

ro=rb ro bro o/")
In the linear limit (yo= 1), Eq. (4) reduces to Eq. (1).

Now, we derive the exact nonlinear dispersion relation
of space-charge waves in a relativistic electron beam.
The relativistic momentum and continuity equations, to-
gether with Poisson's equation, describe the cold electron
beam

Bp +V P = —eE,
Bt Bx

The period of oscillation is given by

1 PIP h-p=+
ui ( W —y+Pbu)'

(12)

which can be rewritten in a form analogous to Eqs. (1)
and (4) as

co —vbk =+ v 27rci)&

"2 Pph
—P

8 —y+ u

(13b)

where the plus (minus) signs refer, respectively, to the
positive- (negative-) energy mode if oi) 0 and the reverse
if cu &0.

Equations (12) and (13) admit both superluminous
(vp„) c) and subluminous (vph &c) sPace-charge waves.
Wave breaking does not occur for superluminous waves
since in that case the electron velocity may never reach
the wave phase velocity. However, for subluminous
waves there is the possibility of wave breaking.

In the beam frame, the electron density is '

Uphnon'= (14)

which combined with the fact that v' oscillates between
the turning points +vo shows that wave solutions exist
provided

V h ( V ( V
p

In the laboratory frame, it is evident from Eq. (8) that
wave solutions for space-charge waves are bounded by

Writing in terms of the frequency co=2~/P, we then ob-
tain the following exact nonlinear dispersion relation of
space-charge waves in a relativistic electron beam:

i/2 7rcop
Qj —+ (13a)

u 1 — /2 ph

( W —y+Pbu)
du
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V (Uph 1f Vph + Vb

V ) Vph 1f V ph (Vb
(16)

Equation (16) corresponds to the upper bound of Eq. (15)
in the beam frame, namely, u'=vph Another limitation
on the electron velocity can be obtained by Lorentz trans-
forming the lower bound of Eq. (15), v'= —v'h, to the
laboratory frame using the relation

v'=(v —vb)/(1 —vbv/c ),
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which gives

2vb
vugh Pb vp

2

U- :—Vcr .
1+P'b 2P—bPt, h

(17)

Hence the existence condition for space-charge waves in
a relativistic electron beam, valid for both negative-
energy and positive-energy modes, is

X
I 2
X
X
Cl
4J
N

X
OX

Ucr ( V (Vph 1f Vph & Vb

Uph (U (V(& 1f Vph (Vb (18) 0
-I -0.5 0.5

Violation of Eq. (18) implies wave breaking. A graphical
display of the condition (18) is presented in Fig. 1.

Next, we derive an expression for the wave-breaking
amplitude of space-charge waves. It follows, from Eqs.
(5) and (10), that the electric field inside the beam is

ph

FIG. 2. Plot of the normalized maximum wave amplitude
E,„=eE,„/mcoec as a function of p~„ for pb=0. 5. Shaded
region indicates wave breaking.

E =+&2(mcus c/e)( W' —y+Pbu)' (19)

E,„=&2(m cv c/e)( 8' —1/Yb )' (20)

Equation (19) shows that the maximum of E (i.e.,
dE/du =0) is given by v = vb, thus

Now, W is related to the turning points of u through the
equation W —Y+Pbu =0, and according to Eq. (18) the
critical turning points for which wave breaking occurs
are given by U =v„or v =U h. Hence, at the onset of
wave breaking, the value Wis

Vcr pb u cr Yph pb u ph (21)
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MODE
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MODE

The final expression for the maximum electric field is ob-
tained by substituting Eq. (21) in Eq. (20), yielding

E,„=&2(men c/e)[Y h(1 —P hPb) —1/yb]' . (22)
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FIG. 1. Plot of the upper and lower bounds of the electron
velocity as a function of P~„ for Pb =0.5, P„=v„/c. Shaded re-
gion indicates wave breaking.

This expression agrees with a Lorentz transformation of
the expression for wave breaking in a stationary plasma.
Equation (22), valid for both negative-energy and
positive-energy space-charge waves, determines the criti-
cal wave amplitude above which wave breaking takes
place. A graphical display of Eq. (22) is shown in Fig. 2.
It is expected that the efFect of beam temperature can
reduce the wave-breaking amplitude. "' '

Equations (18) and (22) provide alternative means for
analyzing the wave-breaking condition of space-charge
waves in a relativistic electron beam. It can be conclud-
ed, with the aid of Figs. 1 and 2, that for a given v„: (i)
for either the negative-energy or positive-energy modes,E,„~O as v h~vb, (ii) for the negative-energy mode

,„decreases as v~h increases, and (iii) for the positive-
energy mode, E „increases as v h departs from vb and
E,„~as!v,h! c.

The breaking of space-charge waves studied in this pa-
per is of fundamental relevance for devices driven by in-
tense electron beams. For example, it determines the
largest accelerating field obtainable in wave collective ion
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accelerators as well as wake-field accelerators, ' '"'
and may be a nonlinear saturation mechanism for free-
electron lasers. ' ' Our results indicate that wave
breaking imposes severe limitation on devices that em-
ploy space-charge waves, either negative-energy or
positive-energy modes, with phase velocity close to the
electron-beam velocity since in that case the normalized
maximum wave amplitude eE,„/mes c &&1. On the
other hand, wave breaking presents little (or no) restric-
tion for devices that employ positive-energy space-charge
waves, either parallel or antiparallel propagating, with
phase speed near (or greater than) the speed of light,
since in that case extremely large wave amplitudes, such
that eE,„/m co c && 1, are attainable.

It is important to note that the phenomenon of particle
trapping can compete with wave breaking to limit the
amplitude of space-charge waves. If the wave amplitude
is sufticiently large, a substantial fraction of beam elec-
trons can become trapped in the wave potential well. In
the reference frame moving with the wave phase velocity,
the condition for the onset of particle trapping' is
(y —1)mc ~ ~e((),„~, namely, when the electrostatic po-
tential energy of space-charge waves exceeds the kinetic
energy of beam particles. When this occurs, particle
trapping may limit the wave amplitude before wave
breaking takes place. For example, according to Eq. (22),
the wave-breaking amplitude becomes infinite in the limit
~v h ~

=c. Physically, however, when the wave amplitude
satisfies the aforementioned condition, electrons become

trapped and continuously gain energy from the wave,
thus limiting the wave amplitude, even though wave
breaking has not occurred mathematically. On the other
hand, if the wave amplitude is too small to trap electrons,
then wave breaking is the physical mechanism that deter-
mines the maximum amplitude attainable by space-
charge waves. Equation (8) shows that wave breaking is
the consequence of wave profile steepening as the electron
velocity approaches the wave phase velocity. Hence, in
terms of Eq. (8), the mathematical condition for the onset
of wave breaking is U Uph At the critical condition
U U ph both n and BE/Bx become infinite. When
U P U ph the wave field becomes multivalued and the wave
profile begins to break. After wave breaking occurs, the
wave energy is transferred to beam particles, leading to
the generation of highly energetic electrons. Physically,
the cause of wave breaking can be attributed to redistri-
bution of the wave energy spectrum through nonlinear
effects. A perturbation analysis of the nonlinear wave
equation shows that as the wave amplitude increases the
energy is fed into wave components with higher and
higher frequencies and wave numbers. This leads to the
change of wave profile and eventually results in the
breaking of the wave.
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