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THE SPECTRAL ARALYSIS APPROACH TO MIDDLE ATMOSPHERE MODELLING
C.J. Zamlutti

Instituto de Pesquisas Espaciais - INPE
C.P. 515, 12201 S=zo Jose dos Campos, SP, Brasil

ABSTRACT

This paper deals with the theoretical aspects of using spectral analysis in
middle atmosphere modelling. We start from the hydrodynamic equations on
which a wavelike solution is imposed. This procedure 2llows us to identify:
a) a dispersion relation; b) excitation and damping mechanism; ¢) mutual
coupling between each pair of modes. Next we discuss the problem of choosing
appropriate boundary conditions. Finally we comment on the accuracy saspects
of this type of modelling.

INTRODUCTION

To model the atmosphere is to find an analytical, empirical or
numerical slution to the hydrodynamic system of equations written as:

dhfdt = &h -V . ¢ (1)

where h is the vector of the hydrodynamics parameters: msass, momentum and
energy, 6h is the local rate of change of these parameters and ¢ is the matrix
of the corresponding fluxes.

In this work we are particlarly interested in the spectral
analysis approach to atmospheric modelling. In this approach the driving term
6h, resulting from the balance between excitation and damping mechanisms, is
represented by the sum of a finite number of wavelike components and the
derived hydrodynamic parameters are also assumed to have a similar wavelike
decomposition. Frequency range response of the middle atmosphere, even when a
single component mode excites it (Salby, 1984), as well as the existence of a
periodic response in the absence of excitation (Salby, 1981) considerably
increase the complexity of this type of approach.

The forcing mechanisms wmay be steady, such as the regular solar
radiation (which drives tides and quasi-stationary planetary waves), or



random, such as particle precipitation (which drives gravity waves). The
first set of mechanisms have a worldwide influence whereas the second is
usually localized. Large amplitude responses, from the middle atmosphere, to

one of these mechanisms may drive other oscillations through wave breaking
(Lindzen, 1981).

To compromise with the actual situation existing in the middle
atmosphere, we opted in this work to solve ZEguation 1 using the method of
separation of variables. This approach has the advantage that it allows us to
use relations involving the actual spsce-time response of the middle
atmosphere to forcing mechanisms.

THE HYDRODYNAMIC EQUATIONS

The hydrodynamic eguations are detailed using the following

relations:
hy = p, hg = pu, h3 =p Cp T 3 (2)
¢hy = 0, 6hy = - Vp +pg -22 x hy ,
¢h3 = (Q-1) ~u. Shy +u. V(yp) ; (3)
$1 = by u, ¢ = by u + ¢vis, ¢35 = (hg + yplu + Pheat (4)
$ = -n(Vo+ (Vu)t - (2/3)I V. u] (5)
¢heat SAVT ©

where o is the air density, T its temperature, p its pressure, Cp is the
specific heat at constant pressure, vy is the ratio between specific heats, 0
is the viscosity coefficient and X is the thermal conductivity. The vector
symbols represent the wind velocity by u, the acceleration due to gravity by
g and the earth’s angular velocity by Q. The matrix symbol I stands for the
identity matrix. Thermal excitation is the only energy source considered
through the local energy balance (Q-L), where @ 1is the rate of energy
deposition and L the rate of energy loss.

Our next step is to consider that the source terms are space-time
periodic funetions. The derived atmospheric parameters: p, wand T, are
assumed to be composed of a constant added to a space-time periocdic function.

The pressure, p, relates to these parameters through the eguation of state:

p = p RI/H



where R is the universal gas constant and M is the mean molecular mass of the
air in a.m.u.

Henceforth the symbols p, u and T will be used for the averade
density, wind and tempersture. The amplitude of the space time component of
these parameters will be denoted with the same symbols tildered. Assuming the
amplitude of this component can be as large as 30% of that of the constant

term, first and second powers of the space-time term need to be considered.
THE SPACE-TIME EQUATIONS WITH NO FORCING MECHANISM

In this section the space-time dependence of the parameters is
made explicit by replacing the density, wind and temperature in Equations 2-8
respectively by: p + 5 a(t) a(s), u+u a(t) d(s), T+ Ta(t) a(s); where a(t) is a
function dependent only on time and a(s) is a function of space coordinates
exclusively. A series of powers [a(t)a(s)li, where i varies from O to 3, is
obtained. Equating the coefficients of equal powers, on both sides of
Equation 1, four sets of equations result. These equations can all be put in
the standard form:

Dt(t) + D(s) = C, (8)

where D stands for a differential expression involving only time derivatives
(subscript t) or space derivatives (subscript s). Here € represents =
constant vector which may eventually be the null vector.

Before we present the equations referring to the to the power i
= 1 of [a(t)a(s)]? in the form of Equation 8, some additional simplifying
assumptions will be made. The first one is the validity of the hydrostatic
equilibrium for the zeroth order equation (i = 0). The other assumptions
concern the use of constant values for n, X, v, Cp, and M moreover a
simplified expression for the viscosity term (valid for incompressible fluids)
will be used. The linear equations then become:

L]_._u u+iu] L@ [Ea] ©
Lo ) a(t) p a(s) P
u+—p—u]a'(t) __I}_uvza(s) + luu + uwu +£uu] . Yas)
p a(t) p a(s) e a(s)
+ RTM-i{JL +‘3L] Va(s) _ o, _ sgxu -
pT) a(s) P
- 239xu-(uu+uu).&_gm‘ily—g _p_E'_'I;], (10)
p 3 o T p P T



CP T[i+_T.] ﬂ!’.l_ llv_a..(.fl + T(C +YRM-1) u . Va(s) +

b T) a(t) T i(s) P a(s)
+ TCP[_E + I e, 28 L e u [V_PJ,.VE] . (11)
o] T a(s) p P T

where the primes indicates the first order derivative relative to the
specified variable.

In what follows we consider a short range of altitudes such that
(vo)/p, (VT)/T, wu, p, T, u can all be taken as constants. AS & result the
time differential expression must be a constant and the space differencial
expression should be a constant as well. The constants are written as:

a'(t) : .-
_____ - 12
a(t) ! (12)
a(s)

The difference between our approach and the traditional linear
aspproach is that here the angular frequency, w, is the fundamental angular
frequency of the actual observed time variation (resulting from the
superposition of several waves). The constant, k, also refers to the actual
propagation constant existing in the atmosphere. Both and k can be purely
imaginary numbers, corresponding teo sinusoidal functions, or could include a
real part, corresponding to damping or growth.

OSCILLATORY RELATIONS
Equations 8-11 can be written in a matrix form as:
D(w, kv = 0 (14)

where D(u,k) is a matrix which depends alsc on the 2eroth order parameters
and v is the vector of the amplitude of the periodic components of the
atmospheric parameters.

Considering the unperturbed atmosphere as horizontally
stratified the gradients of the zeroth order parameters will be nonzero only
along the radial component. It then follows that the elements of the matrix
D{(w,k) =are expressed as:
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and the vector v is given by:

v = (o/p u. u /Tt , (16)

T E)u'i'
where r is the radial coordinate, of a spherical coordinate system with origin
at the center of the Earth; © stands for latitude and ¥ for longitude.

The dispersion relation is obtained by the equation:
Pet D = 0 , (17

and will not be developed further in this work. To compute the amplitude of
the oscillations we include on the right hand side of Equation 14 the vector
of excitation and damping mechanisnm.

It is possible to observe the strong influence of a constant
wind on the matrix D. Constant wind can be understood also as a planetary
oscillation (of semiannual periodicity) when tidal periodicities are being
considered. More generally, any long periodicity oscillation can produce the
"constant wind" for a short periodicity oscillation.

Ir the present spproach the most important mechanisms for
transmission of energy and momentum (see Lindzen, 19688) were taken into
account for a realistic atmosphere. It c¢an be considered as an extension of
the theory of gravity waves by Yeh and Liu (1974), and can be applied to tides
and planetary waves as well.

The driving mchanisms for oscllations are the ones which
produces momentun and/or energy variations. In particular, the regular scolar
radiation, absorbed as heat energy by ozone (around 45 km altitude) snd by
water wvapour (around 8 km altitudes), constitute san important driving
mechanism for tides &and planetary waves (see Forbes and Garrett, 1978),
Planetary waves can also be generated in the troposphere (see Salby, 1984).
As for the gravity waves some sources are identified and others are questioned
(Hines, 1972). Concerning these waves only the ones that satisfy Equations 12
and 13 can be treated with the present approach.

From the theoretical point of view we assume a heating mechanism

of the form qf(t)f(s). The loss mechanism is the MNewtonian cooling of the
form Ta(t)a(s). The driving mechanism vector then becomes:
t
w = 1000 o 1O f& _ of (18)
pT a(t) a(s) T



and again we expect, at least in an approximate sense, that:

f(L)/a(t)

B, (19)

f(s)/a(s) K s (20)

where B and are constants. When a small frequency spread response ocours it
is more likely that Equations 12 and 20 be satisfied in an average sense.

Mutual coupling between modes affect even the linear equations
through the terms: (unr + um).[Va(s)]/a(s) and (uu + nu).(V )/p, although the
coupling can be better appreciated in the higher order equations (i = 2, 3).
The conclusion here is identical to that of Spizzichino (1989), namely the
sppearance of sums and differences of the frequencies of the two considered

modes as well as sums and differences of the respective propagation constants.
DISCUSSION ARD CONCLUSIONS

Once established the basic oscillatory relations and the driving
mechanisms the problem of spectral analysis modelling can be completed if
appropriate boundary conditions are taken. For middle atmosphere modelling it
seems convenient to choose the altitudes of 20 km and 70 km as the zeros of
local heating (see Forbes and Garrett, 1976). At these two altitudes, the
knowledge of the vector v is necessary to complstely account for momentum and
energy exchange Dbetween the middle atmosphere and its upper and lower
boundaries.

The present approach reduces to the traditional forms, to deal
with planetary waves (Salby, 1984), tidal waves (Forbes, 1982s,b) and gravity
waves (Yeh and Liu, 1874), when we consider a(t) = expjwt and a(s) =
exp-jk.M. It is more appropriate, in the study of middle atmosphere waves,
because we can deal with the a(t) and a(s) actually observed, including the
efects of nonlinesrities, mode couplings and interactions which affect the
parameters of the medium. Although this aspect has not been fully explored in
this work, because of ifts limited length, we believe that some insight can be
gained when applying it to freguency spread responses of the middle atmosphere
to oscillatory forcing mechanisms.

The relations obtained with higher order powers of the product
{a(t)a(s)) are rich to the extent +that, besides the appearance of sums and
differences of the basic frequencies and harmonics of each considered

fundamental frequency, they include interesting restrictions, like for



instance u.k = 0, resnlting from the continuity equation. These relations
have not been worked out here, but we can point out that in the momentum
equation allowance can be made for a varying n produced by the oscillatory
perturbations (see Lindzen, 1881).

The most severe criticism to spectral analysis modelling of the
atmosphere has always been that it is not able to reproduce transient
situations. This restriction has not been eliminated in the present work but
is somewhat attenuated since Equations 12, 13, 19 and 20 may be applied to

these transients, at lesst in & spproximate sense.

To conclude, the spectral analysis approach was undertaken in
this work from a different point of view, namely using its direct connection
to the method of separation of variables. By doing so we could determine a
number of relationships more appropriate to the analysis of experimental dats,
since only first order numerical derivatives are necessary to determine the
constant parameters o and k. Several experimental and theoretcal tests will
be necessary to establish the extent to which the proposed method can
contribute to improve our understandng of the intricate interactions which
govern the behavior of middle atmosphere dynamics.
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