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ABSTRACT

A previously developed theory for electronic properties of doped
semiconductors, that uses a Hubbard-like Hamiltonian and takes into
account the effect of disorder, is applied to the impurity bands
associated with inversion layers. It is shown that the impurity bands
have a considerable bandwidth for concentrations in a range of

experimental findings.
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In this paper we consider the problem of impurity band formation due
to 2-D hydrogen-1ike bound states whose centers are randomly
distributed on a plane surface.

We assume a Hubbard-1ike Hamiltonian

where a:U and as refer to creation and annihilation operators of an
electron with spin o bound to an impurity assigned to the site i and

M V.. is the ground state energy (E;) of the electron in

= 345 qor Vi1

ig
the atomic 1imit, Vij(i zj) and U are respectively the hopping matrix
associated with sites i and j and the intra-atomic correlation energy.

They are given by

vij=-J¢(?-ﬁ1)v(“ﬁ_ﬁi)¢(‘ﬁ_ﬁj) dor (2)

and
v = le(?‘})l2 & u(F) e dery dery (3)

where k is the dielectric constant and V(r) is the contribution to the
potential energy of the electron due to an impurity at site j.

We treat disorder according to the Matsubara-Toyozawa® (M-T) theory
for doped semiconductors. It seems to be a general property of tight-

-binding Hamiltonians for regular 2-D lattices® that discontinuities
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appear in the density of states at the band edges together with
divergences in the real part of the diagonal Green's function. As we
will show later, the M-T theory is very convenient to obtain
information about those properties in the case of 2-D structurally
disordered tight-binding models.

It is well-known that bound states due to sodjum ions in the
proximity of the $i-Si0, interface of a MOSFET give rise to impurity
bands at concentrations that vary between 101! -10%2¢cm™2.% Since the
first calculation of these bound states by Stern and Howard* (S-H)
using the effective-mass theorem and considering a thickless inversion-
-layer, many improvements have been achieved?

Our present calculations of impurity bands correspond to the rather
unrealistic case of the S-H solution for the bound state with
unscreened impurity potential and with the impurity located itself at
the inversion layer. This rough treatment generates 2-D hydrogen-like
bound states with binding energy equal to 4 Ry*. Although this over-
-simplification is unnecessary for the technique to be used it allows
us to obtain analytic solution for the Fourier transform of the
transfer matrix Vij' We will leave improvements on the calculations of
Vij for a future paper. So, we take as ground state for the bound

electron

w(r) = (8/n)1/2a5* exp(-2r/ag) . (4)

where a, is the effective Bohr radius, a, = kh/m*e? and

k = (k

ox * E31)/2' For the case of Si-Si0,, 1Ry* = 42 meV.



Next, we apply a previously developed theory for impurity bands in
doped semiconductors® based on a Mott-Hubbard model to the present 2-D

case. We define two Green's functions, Gi}c and 6130 as

* . + +
65o{t) = - da(t) <[ay n;_ 2y (D)1 >, (5)
withn? =n, andnI =1-n, . The average Green's function
i-g i-0 i-o i-o
results in
+
62, (s, = T gt (6)
iig " 7ay = ' £ lw- >

where E+=Ed + U, E_=Ed and

Ve T ey
e w)=1+ — 4 . + e (7)
w-E~ (w-F7)2

In 2-D, & obeys the equation

ey =—1 (8)
1-n"{w)
ET (") Ve (k)eck (9)
(2w)2wz |1 - Net{w) V(K)
W

In the above equation N is the number of impurities per cm? and V(K)

is the Fourier transform of the hopping potential:

v(k) = J exp(ik.B)V(R)dz2r. (10)



Using Eq. (6), we have (from now on we will omit the symbol minus

in G and &)

w-:GiiU(w)> =n__&(w) . (11}
Defining

glw) _ 1

= , (12)

Nag (u +is)

where a, is the effective Bohr radius, we have for the density of

states D{w)

ag D{w) = — . (13)
m u? +s?

Now, bringing together Egs. (8), (9) and (12), we have, after some

manipulation,
W o= Naéu-r%—f vi{q) [u-v(g)] q dgq (14}
o [u = v(q)]? + 2
and
Naz = 2 J‘” v2(a)q dg (15)
O T lu-v(a)1? + 57

where E = k/o and v(q) =ag V(og).

For regular 2-D lattices, Im Gii(a) shows discontinuities at w=E,
and w::Eu, where E, and Eu are the lower and upper band edges,

respectively. On the other hand Re Gii diverges at E, and Eu.



In the above notation

a2 uf +s?
Nag _

and

Im< Gy (W) > = - L N (17)
Naé Uz + g2

In order to fulfill the conditions on the real and imaginary parts of Gif

we must have

s{w) = 0 for E,>w  or w>-Eu,

- +
u{w) - 0 as W Ep or woEl.

Bringing these results into Eq. (17) we see that the discontinuities
lead to the unphysical result of E, = Eu==V(R==0). Therefore a finite
bandwidth is not consistent with the discontinuity of the density

of states at the band edge, at least in the formalism of Matsubara-
~Toyczawa.

After the pair of Eqs. {14) and (15) the Green's functions are
obtained self-consistently. In case where an analytical expression for
V(K) is known, Eq. (9), instead can be used to provide an analytical
solution for £7. Defining a=2/a, and % =aR, and using Eqs. (2), (3)
and (4), we get V(x) =-8x Ky(x) Ry*, where K;(x) is the modified Bessel
function of first order, and U=4.71 Ry*. The Fourier transform of V(R)

is
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V(k) = - —— 2 Ry*, (18)
(4+<’if‘3k2)‘2

Figure 1 shows the bandwidths of the lower and upper impurity bands,
separated by U and their relative positions to the bottom of the
inversion layer. Figure 2 shows the impurity bands for some
concentrations, namely N = 1.55, 3.10 and 6.20 x 10 cm™>.

It is evident that no discontinuity is observed on the band edges.
However, a band tail pointing to the lTow energy region characteristic
of impurity bands in 3-D is not observed in 2-D bands. This feature
does not seem to be a result of the approximation invelved in the M-T
technique to treat disorder. It also appears when we use computer
simulation of disorder and obtain the band by a cluster model?®,

It is worthwhile to mention that Puri and Odagaki® calculated the
one-band density of states using the homomorphic cluster coherent
potential approximation. They have obtained no band tails for they
2-D energy bands.

The overlaping of the two bands occurs at a concentration of
4x10%%em™®, At concentrations available for experiments?®, 1 to
3x10*em™®, there is no overlaping but the bandwidth of the lower

band is 50% to 100% of Ed'
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FIGURE CAPTIONS

Fig. 1 - Top and bottom edges of the 2-D impurity bands as a function

Fig. 2 -

of the concentration N. The position of Ed is set at origin,
as the location of the lower band. EO is the bottom of the
inversion layer and U is the intra-atomic correlation energy.
The arrow indicates the concentration at which the bands
start overlaping.

Density of states of impurity bands as a function of

concentration, Ed is set at the origin. Dotted lines refer

to Eo'
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