1 Dalitanii No			
1. Publication NO	2. Version	3. Date	5. Distribution
INPE-2996-PRE/448	*2nd	Feb., 1984	☐ Internal External
DTE/DCT	Program MATERIALS		Restricted
6. Key words - selected INVERSION LAYERS HERERO-STRUCTURE IN		•	RITY HUBBARD BANDS
7. U.D.C.: 539.2			
8. Title INPE-2996-PRE/448			10. Nº of pages: 12
TWO-DIMENSIONAL IMPURITY BANDS AT SEMICONDUCTOR HETERO-STRUCTURE INTERFACES			11. Last page: 10
MB1BNO-SINOUL			12. Revised by
	·		for forest, forma
9. Authorship I.C. da Cunha Lima A. Ferreira da Silva			/ / /
A. Ferre	ira da Silva		José Roberto Senna
			13. Authorized by
Responsible author	7A.		Arado Nelson de Jesus Parada Director General
14. Abstract/Notes			
doped semiconductors, taccount the effect of dwith inversion layers. considerable bandwidth findings.	hat uses a Hub isorder, is ap It is shown th	bard-like Hama plied to the a at the impuri	impurity bands associated ty bands have a
	vill be submitt I version, Apri	•	l Review B.

r -- ··

TWO-DIMENSIONAL IMPURITY BANDS AT SEMICONDUCTOR HETERO-STRUCTURE INTERFACES

I.C. da Cunha Lima and A. Ferreira da Silva
Instituto de Pesquisas Espaciais - INPE
Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq
12200 São José dos Campos - S.P. - Brasil*

and

Department of Physics, Brown University, Providence, RI, 02912, USA

ABSTRACT

A previously developed theory for electronic properties of doped semiconductors, that uses a Hubbard-like Hamiltonian and takes into account the effect of disorder, is applied to the impurity bands associated with inversion layers. It is shown that the impurity bands have a considerable bandwidth for concentrations in a range of experimental findings.

^{*} Permanent address

In this paper we consider the problem of impurity band formation due to 2-D hydrogen-like bound states whose centers are randomly distributed on a plane surface.

We assume a Hubbard-like Hamiltonian

$$H = \sum_{i,j} V_{ij} a_{i\sigma}^{\dagger} a_{j\sigma}^{\dagger} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}^{\dagger}, \qquad (1)$$

where $a_{i\sigma}^{\dagger}$ and $a_{i\sigma}$ refer to creation and annihilation operators of an electron with spin σ bound to an impurity assigned to the site i and $n_{i\sigma} = a_{i\sigma}^{\dagger} a_{i\sigma}$. V_{ii} is the ground state energy (E_d) of the electron in the atomic limit, $V_{ij}(i \neq j)$ and U are respectively the hopping matrix associated with sites i and j and the intra-atomic correlation energy. They are given by

$$V_{ij} = -\int \psi(\vec{r} - \vec{R}_i) V(\vec{r} - \vec{R}_i) \psi(\vec{r} - \vec{R}_j) d^2r \qquad (2)$$

and

$$U = \int |\psi(\vec{r}_1)|^2 \frac{e^2}{\bar{k}|\vec{r}_1 - \vec{r}_2|} |\psi(\vec{r}_2)|^2 d^2r_1 d^2r_2 , \qquad (3)$$

where \bar{k} is the dielectric constant and V(r) is the contribution to the potential energy of the electron due to an impurity at site j.

We treat disorder according to the Matsubara-Toyozawa¹ (M-T) theory for doped semiconductors. It seems to be a general property of tight-binding Hamiltonians for regular 2-D lattices² that discontinuities

appear in the density of states at the band edges together with divergences in the real part of the diagonal Green's function. As we will show later, the M-T theory is very convenient to obtain information about those properties in the case of 2-D structurally disordered tight-binding models.

It is well-known that bound states due to sodium ions in the proximity of the $Si-Si0_2$ interface of a MOSFET give rise to impurity bands at concentrations that vary between $10^{11}-10^{12} \text{cm}^{-2}$. Since the first calculation of these bound states by Stern and Howard⁴ (S-H) using the effective-mass theorem and considering a thickless inversion-layer, many improvements have been achieved.

Our present calculations of impurity bands correspond to the rather unrealistic case of the S-H solution for the bound state with unscreened impurity potential and with the impurity located itself at the inversion layer. This rough treatment generates 2-D hydrogen-like bound states with binding energy equal to 4 Ry*. Although this over-simplification is unnecessary for the technique to be used it allows us to obtain analytic solution for the Fourier transform of the transfer matrix V_{ij} . We will leave improvements on the calculations of V_{ij} for a future paper. So, we take as ground state for the bound electron

$$\psi(r) = (8/\pi)^{1/2} a_0^{-1} \exp(-2r/a_0) , \qquad (4)$$

where a_0 is the effective Bohr radius, $a_0 = \bar{k}h/m^*e^2$ and $\bar{k} = (\bar{k}_{OX} + \bar{k}_{Si})/2$. For the case of $Si-SiO_2$, $1Ry^* = 42$ meV.

Next, we apply a previously developed theory for impurity bands in doped semiconductors⁶ based on a Mott-Hubbard model to the present 2-D case. We define two Green's functions, $G_{ij\sigma}^{+}$ and $G_{ij\sigma}^{-}$ as

$$G_{ij\sigma}^{\pm}(t) = -i\theta(t) \langle [a_{i\sigma}n_{i-\sigma}^{\pm}, a_{j\sigma}^{+}(t)]_{+} \rangle, \qquad (5)$$

with $n_{i-\sigma}^+ = n_{i-\sigma}^-$ and $n_{i-\sigma}^- = 1 - n_{i-\sigma}^-$. The average Green's function results in

$$\langle G_{ii\sigma}^{\pm}(w)\rangle_{av} = \frac{n^{\pm}}{w-E^{\pm}} \xi^{\pm}(w-E^{\pm})$$
, (6)

where $E^+ = E_d + U$, $E^- = E_d$ and

$$\xi^{\pm}(w) = 1 + \frac{\langle V_{ii} \rangle_{av}}{w - E^{\pm}} + \frac{\langle \Sigma V_{ii} V_{ii} \rangle_{av}}{(w - E^{\pm})^2} + \dots$$
 (7)

In 2-D, ξ obeys the equation

$$\xi^{\pm}(w) = \frac{1}{1-\eta^{\pm}(w)}$$
, (8)

$$\eta^{\pm}(w) = \frac{N\xi^{\pm}(w)}{(2\pi)^2 w^2} \int \frac{V^2(\vec{k}) d^2 k}{1 - \frac{N\xi^{\pm}(w)}{w} V(\vec{k})}.$$
 (9)

In the above equation N is the number of impurities per cm² and $V(\vec{k})$ is the Fourier transform of the hopping potential:

$$V(\vec{k}) = \int \exp(i\vec{k}.\vec{R})V(\vec{R})d^2r.$$
 (10)

Using Eq. (6), we have (from now on we will omit the symbol minus in G and ξ)

$$w < G_{ij\sigma}(w) > = n_{-\sigma}^{-} \xi(w)$$
 (11)

Defining

$$\frac{\xi(w)}{w} = \frac{1}{Na_0^2 (u + is)}$$
, (12)

where a_0 is the effective Bohr radius, we have for the density of states D(w)

$$a_0^2 D(w) = \frac{1}{\pi} \frac{s}{u^2 + s^2}$$
 (13)

Now, bringing together Eqs. (8), (9) and (12), we have, after some manipulation,

$$w = Na_0^2 u + \frac{2}{\pi} \int_0^{\infty} \frac{v^2(q) [u - v(q)]}{[u - v(q)]^2 + s^2} q dq$$
 (14)

and

$$Na_{0}^{2} = \frac{2}{\pi} \int_{0}^{\infty} \frac{v^{2}(q)q \, dq}{[u - v(q)]^{2} + s^{2}}$$
 (15)

where $\vec{q} = \vec{k}/\alpha$ and $v(q) = a_0^2 V(\alpha q)$.

For regular 2-D lattices, Im $G_{ij}(a)$ shows discontinuities at $w=E_\ell$ and $w=E_u$, where E_ℓ and E_u are the lower and upper band edges, respectively. On the other hand Re G_{ij} diverges at E_ℓ and E_u .

In the above notation

$$Re < G_{ii}(w) > = \frac{1}{Na_0^2} \cdot \frac{u}{u^2 + s^2}$$
 (16)

and

$$Im < G_{ii}(w) > = -\frac{1}{Na_0^2} \cdot \frac{u}{u^2 + s^2}$$
 (17)

In order to fulfill the conditions on the real and imaginary parts of $G_{i\,i}$ we must have

$$s(w) = 0$$
 for $E_{\ell} > w$ or $w > E_{u}$,
 $u(w) \rightarrow 0$ as $w \rightarrow E_{\ell}^{-}$ or $w \rightarrow E_{u}^{+}$.

Bringing these results into Eq. (17) we see that the discontinuities lead to the unphysical result of $E_{\ell} = E_{u} = V(R=0)$. Therefore a finite bandwidth is not consistent with the discontinuity of the density of states at the band edge, at least in the formalism of Matsubara-Toyozawa.

After the pair of Eqs. (14) and (15) the Green's functions are obtained self-consistently. In case where an analytical expression for $V(\vec{k})$ is known, Eq. (9), instead can be used to provide an analytical solution for ξ^7 . Defining $\alpha=2/a_0$ and $\vec{\chi}=\alpha\vec{R}$, and using Eqs. (2), (3) and (4), we get V(x)=-8x $K_1(x)$ Ry*, where $K_1(x)$ is the modified Bessel function of first order, and U=4.71 Ry*. The Fourier transform of $V(\vec{R})$ is

$$V(k) = -\frac{128\pi \ a_0^2}{(4 + a_0^2 k^2)^2} Ry^*.$$
 (18)

Figure 1 shows the bandwidths of the lower and upper impurity bands, separated by U and their relative positions to the bottom of the inversion layer. Figure 2 shows the impurity bands for some concentrations, namely N = 1.55, 3.10 and $6.20 \times 10^{11} \text{cm}^{-2}$.

It is evident that no discontinuity is observed on the band edges. However, a band tail pointing to the low energy region characteristic of impurity bands in 3-D is not observed in 2-D bands. This feature does not seem to be a result of the approximation involved in the M-T technique to treat disorder. It also appears when we use computer simulation of disorder and obtain the band by a cluster model⁸.

It is worthwhile to mention that Puri and Odagaki⁹ calculated the one-band density of states using the homomorphic cluster coherent potential approximation. They have obtained no band tails for they 2-D energy bands.

The overlaping of the two bands occurs at a concentration of $4 \times 10^{11} \text{cm}^{-2}$. At concentrations available for experiments³, 1 to $3 \times 10^{11} \text{cm}^{-2}$, there is no overlaping but the bandwidth of the lower band is 50% to 100% of E_d.

REFERENCES

- ¹T. Matsubara and Y. Toyozawa, Prog. Theor. Phys. 26, 739 (1961)
- ²E.N. Economou, Green's Function in Quantum Physics (Springer, Berlin, 1979).
- ³A. Hartstein and A.B. Fowler, in Proceedings of the 13th
 International Conference on the Physics of Semiconductors, Rome,
 1976, edited by F.G. Fermi, p. 741.
- F. Stern and W.E. Howard, Phys. Rev. 163, 826 (1967).
- ⁵See, e.g., T. Ando, A.B. Fowler and F. Stern, Rev.Mod. Phys. 54, 437 (1982), and references therein.
- ⁶A. Ferreira da Silva, R. Kishore and I.C. da Cunha Lima, Phys. Rev. B<u>23</u>, 4035 (1981); R. Kishore, I.C. da Cunha Lima, M. Fabbri and A. Ferreira da Silva, Phys. Rev. B<u>26</u>, 1038 (1982).
- ⁷L.F. Perondi (unpublished).
- ⁸I.C. da Cunha Lima, A. Ferreira da Silva and M. Fabbri, Surf. Sci. <u>134</u>, 235 (1983).
- ⁹A. Puri and T. Odagaki, Phys. Rev. B<u>24</u>, 5541 (1981).

FIGURE CAPTIONS

- Fig. 1 Top and bottom edges of the 2-D impurity bands as a function of the concentration N. The position of E_d is set at origin, as the location of the lower band. E_o is the bottom of the inversion layer and U is the intra-atomic correlation energy. The arrow indicates the concentration at which the bands start overlaping.
- Fig. 2 Density of states of impurity bands as a function of concentration. ${\rm E_d}$ is set at the origin. Dotted lines refer to ${\rm E_0}$.

Fig. 1 - I.C. da Cunha Lima and A. Ferreira da Silva

Fig. 2 - I.C. da Cunha Lima and A. Ferreira da Silva