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ABSTRACT

This paper presents some results associated with
semilinear distributed parameter systems on a state
space Z, with some parameters o € P {0 be identified.
Recently some technigues have been developed [2,3.4,5,6,
7, and 8] to solve the joint problem of state and
parameter estimation which is to construct the state
z{t}, t € [0,T] and identify the parameters o € R when
the output observation y(t) an [0,T] is given. These
techniques consider a new formulation with an enlarged
state 2(t) = (z{(t),a) on & new state space 7 = Z x BP
and make some observabiiity assumptions (such as overall
observability introduced in [4])on the linearized
model. However, conditions for this assumptions to hald
have never been presented before. Here we develop some
necessary conditions for overall observability.

1 - INTRODUCTION

Consider the joint problem of state estimation and
parameter identification of distributed parameter systems
of the type

Z(t) = Az(t) + Awx + N(z(t},a«),
Z(u] = Zg (1)
j’(t) = Cz(t)-

where A 1s a lTinear operator which generates a strongly
continuous semigroup on a Banach space Z{the state
space}, Ay RP + Z, N a nonlinear operator from Z x R
to Z, and ¢ a linear operator from the state space 2to¥,
a space of output functions from {0,T] to Y (the output
space).

System {1) may be derived, for example, from the
linearization of a system described by the nonlinear
evolution equations

3t) = flz,ua,t) , 2{0) = 2,
(2}

y{t) = hiz,u,0,t) .

The joint problem of state and parameter estimation
is to construct the state z(t), t € [0,T] and identify
the parameter a = (1,825,002 ) € RP for system (1) when
the output observation y(-) &€ V¥ is given,

We shall see in Sectign 3 that this problem can be
transformed in to state estimation of a system with an
entarged state space Z X RP which has the form

z(t) = A It} + A E(t), 30) = I,
(3)

y{t) = E i(t}.

where A generates a strongly continuous semigroup S(t) on
i =7 «RP. Some techniques have been developed in [2,3,4,
5,6,7 and 8) to solve the problem of state estimation of
a semilinear system of the type (2}. Usually they assume

that the linear system

-1}

HOREE O 3(0) = I,

i (4}
yig) = € z{t)

is observable. In Section 4 we present some conditions for
observability of (4).

Note that system {1} without the nonlinearity becomes

i{t] = Az(t) + A, z(} = 24

(5)
y(t) = Cz(t),
System {5) has the mild solution
t
z{t) = S(t)zy + [ S({t)Aya dr, z{0) = z,
] {6)

ylt} = Cz(t}.

In the next section we given a simple example of a
system described by partial differential equations which
can be expressed in the form (1} once linearized.



2 - EXAMPLE

Consider the following diffusion process

2, =z, +aZ, ’ (n
with boundary conditions

z{0,t) = z{2,t) = 0 , (8)
initial condition

2(x.0) = z,{x) , (9)

and output equation

ylt) = r clx) 2x,t) dx . (o)

]

where a € R? i5 the parameter to be identified and
C(') € LZ(O,E).

Take T and a as an initial guess for the statezand
the parameter a, respectively. Assume, for simplicity,that
a) e 0;

b} 2(x,t) = z(x} (i.e., Z is independent of t);

c) 2(0) = #(x) = 0 {i.e., Z satisfies the boundary
conditions).

Setting z =2 + z' and o = a + o' and using
assumption {a) and {b} we obtain

] = L] = | = 1 ]
2p =z, v 2ot 2, +a'2 {11}

which is the linearization of the dynamics about (Z,a}.
By assumption {c) z' also satisfies the boundary
conditions, that is

2'(0,t) = 2'(e,t) = 0 ., (12}

Now define

1
ool Hobagy = [ 02 o

yiey-¥. {(13)

Clearly, since ¥ is know, y' is obtained with
knowledge of the observation y. Also, by (10}, since
T=Z+2,

L]

y' o= <), Zl(.})Lz(G,E) .

Mow, if we set Z = L?(0,2), A the linear operator
on 1 defined by

Az' =z ===,

with

20
D(A} = {z' & L2(0.2): 22 € L2(0,), 22 = 0
ax? ax

at x = 0 and 2} ,
p =1 (i.e., one parameter « ER'}, A; : R* » Z given by

Mo =Za',

the nonlinearity R(z',a'} = a'z' + 2 ,andC:Z R

b
Cz' = <cle), 2'(:)> 200 4y -
then, we can write (11} = (12) as
2' = Az' + Aja' + N{z',a'), 2'(0)} = 2, (14)
and the gutput observation {13) as

y' =sCz', (15)

Dropping the ' notation, equations (14) - (15)
become (1).

3 - THE JOINT STATE AND PARAMETER ESTIMATION

In this section we show that the joint problem of
state estimation and parameter identification, as
formulated in Section 1 {for system (1) and state space
2) is equivalent to just state estimation of a system of
the type (3) with an enlarged state space Z-2xFRP,

Since o € Rp, a = %% = 0 and system (1) can be

expressed as

l'i(t} A AT z{(t) [N(z(t).a)
L,e ool « " 0

y(t) = [¢ o] l:z(t)]

x

(16)

with initial condition {2{0),al0)) = (24,a). We call
(16) the overall system for (1).

Now, if we define Zp = (Zo.a) and Z(t} = {(2(t},a)
for each t € [0,t], then we can write the overall system
{16) in the form (3) with

< | A A - | N 4 E c -
A-[D u]' = 0] and €= [ 0].

So, the joint problem of state estimation and
parameter identification of (1) is transformed into
state estimation of {3).



Note that A generates the strongly continuous
semigroup 5(t) on Z given by

. [ s{t)  Li(t} ] .
S(t) = ¥
0 I

t
Li(t)a = f S{t) A dt
[

where

and I is the identity on R,

4 - QVERALL OBSERVABILITY

Observe that system (4),the linear part of (3), has
the mild solution ’

zZ(t) = 8(t)2, , ZD) =2, .,
{17

vt} = € z(t).

Basically equations (6) and {17) are the same,
However, when we refer to the overall system (17) we mean
a system with state space I=1x Rp, whereas we regard
(6) as a system with state space Z and a perturbation.

Using the concepts of initial observability
(see[1]) and continuous initial observability {see[1]) we
shall define initial and continuous initial overall
observability:

Definition: We say that {6) is initially (continuous
initially) overal} observable [9] if system {17} is
fnitially (continuous initially) cbservabie,

Clearly, if we have initial overall observability
of (6), then €5(.): 7 + ¥ is a one-to-one mapping and
this cleariy implies that CS(-) : Z - ¥ is also a one-
-to-one mapping and therefore we have initial
observability of {6). It is also immediate to verify
that continuous initial overall observability of {5)
implies continwous initial observability of (&).

Suppose now that A; is net injective, i.e., kernel
{A,) = {0}, Thus, we can find a, € Rp, ap = 0, such that
Ay ap = 0 and for Z, = {0,aq} = 0 we have

T5()3e a ¢ [ §(-=1) Ajag dr = 0
]
which implies that kernel (CS{:)} = 0, that is, the
overall system cannot be neither initially nor
continuous initially observable.

Summarizing these two necessary conditions for
overall observability we have

Lemma: If system (6} is initially (continuous initially)
overall gbservable, then

i) system (6) 1s initially (continugus initially
observable, and

ji} A, is & one-to-one mapping.

Actually if (ii) does not hold we have more parameters
than really needed in the model, since we can redefine o
in a new space of parameters I, = RP/kernet {A.) of
dimension p' = [p - dim {(kernel {A)}] < p. In the sequel
we shall assume, without loss of generality, that A
satisfies (ii) in the above lemma, i.e.,

Kernel {Ay) = {0}.

Consider now the following theorem which establishes
another necessary condition for overall observability:

Theorem: Let the operator © : 7 » Z x ¥ be given by

A A
T=[ ]. (18)
[

1f the system is initially overall observabie
kernel (T} = {0}. (19)

Proof: Assume that (6) is initially overall gbservable
but {19) does not hold. Hence, there is
tz5,a) £ D{A} x BP, [z4,a) = 0, such that

Azg + Ay u = 0, {20)
Cz, =0, (21)

Acting C5{.} on both sides of {20) and integrating
on [0,t]), t 2 0, we get

t t
I CS{t)hz,dr + I CS{1)ALadt = 0, for all t z 0.

L} 0

Thus, since 2o € D{A) we can write

t
Cs{t)zy - Czq + J CS(t)Aedt = 0,
8 (22)

forali tz0.

and hence, substituting (21} in (22) we obtain

&5y [‘u°]=0, ¥tz

and therefore, since D{A) is dense in Z
kernel (£5(-)) = (G}

which is & contradiction to the assumption of overald
abservable, So {19} holds.

g.E.D.



5 - CONCLUSIONS

In order to solve the problem of estimation z(t) and
identifying a for the nonlinear system (1) it is often
required overall observability of the linear system (8).
This is the same as observability of (17).

The results of Section 4 give only necessary
conditions for overall observability of (6} or
equivalently observability of {17}. We should note here
that, in general, these conditions are not sufficient.
However, for the particular case of finite dimension
state space Z, it is not difficult to show that the
converse of the theorem in Section 4 holds.
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