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1 - INTRODUCTION

The control of distributed parameter
systems has given rise to a lot of research
in recent years due to its importance under
theoretical and practical points of view.
Flexible structures are a class of ;
distributed parameter systems whose importance
has steadily increased. As examples of such
structures one can mention long bridges, large

ships, flexible airplanes, rocktes and
satellites. The dynamics of these systems is
usually described by a hybrid set consisting ‘
of ordinary and partial differential !
equations. Closed solutions do exist for few
cases only, and approximate solutions are
commonly considered. These solutions present
two problems in most of the cases: i) the
discretized models possess a large number of
degrees of freedom; ii) the higher modes are
less accurate than the lower ones. These i
drawbacks clearly justify the necessity of
using an order reduction technique.

Order reduction methods are usually
composed by two steps: selection of critical
modes [1]-[5] and reduced model evaluation
(6]-[8]. The application of standard order

| reduction methods to the control of H

vibrating structures is not straightforward
because the critical modes are known in
advance to be the lower ones (the higher are
less accurate and harder to be excited). !
Another distinguishing feature of this problem
is the possibility of using actuators and
sensors (a/s) whose position, type and

number can be changed.

The objectives of this work [9] are: i)
to analyse and compare different order
reduction techniques conmsidering their
applicability to flexible structures models;
ii) to present an approach for determining
a/s configurations to ensure that the lower i
modes become the critical ones. In order to
obtain numerical results, two structures,
namely a free-free beam and a completely free
rectangular plate, have been investigated

- and modal importance distributions are presented,
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This work considers some aspects of the dynamics and control of a elass of
distributed parameter system, namely: Vibrating Structures. Some techniques for
order reduction are discussed and compared taking into account their
applicability to the control of those structures. To investigate the influence
of the number, position and type of actuators and sensors on the reduced model,
two structures are considered: a free-free beam and a completely free rectangular
plate. Mode dominance distributions are presented for both structures
corresponding to different configurations of actuators/sensors. The results
show that the dominance measure originally proposed for the selection of
eritical modes can be also used to specify convenient actuators/sensors

i
!
{2 - STATEMENT OF THE PROBLEM

; Consider a linear time invariant system
represented by equations in standard state

‘variable form:

; X = Ax + Bu , ’

¢

y =0Cx, 2)
‘where x & R® and y € Rq, and A,B and C are
‘constant matrices of appropriate dimensions.
+In this work, capital letters denote matrices
rand lower case letters represent vectors.
Suppose that an appropriate mode selection
‘eriterion has been dsed and m modes are to be
retained., After applying the Jordan
“transformation x = Vz to (1) and (2), the
{partitioned system can be written:

| j
§ z1 =M 21 + Gy u, (3)5
é 22 = A2 z2 + G2 u , (4)i
i y =H1 z1 + Hy 2z, (5)1
where Ay =diag(Ai,...Ap), Az =diag(lm+1,...xn),f

i6 = [6T6T1T = U B, H=[H) H,] = CV and
(U=v-1, Note that A; constains the critical
.eigenvalues of A and A, constains the
‘noncritical ones.

The signal flow representation for the
,original system having the critical and

inoncritical modes is presented below: i
:

. Vii ;
‘ i
1 z + X1
g G, E? =A121 +Giu V21 .

i i
'i-u—:. §
i z2
i G, 2y =Azz5 + Gau Vi
; X

2!
' Va2 ul

+
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... - The problem of deriving a reduced order
model consists in the evaluation of a system
given by: }

X1 = Ax; + Bu , (3)
| %2 = F(R1,u) , 7

where only the dynamics of the critical modes
jhas been considered. The matrices A, B and the
.relation F can be provided by different
methods ([6]-[8]) according to different
criteria (steady state agreement, minimal
lerror, etc).

H

i

13 - DYNAMICAL MODEL OF VIBRATING STRUCTURES

The dynamics of a vibrating structure can
:be described by a partial differential
equation given by:

H i

E ‘ 2
Liw(r, 0]+ ¢ plu(r,0)] su(r) 0@
| A at

S FG,) . @)

'

!In the above L and D are differential
‘operators containing information concerning
‘stiffness and damping properties respectively,
‘M is the mass distribution, F is the
;distributed force and w is the elastic
:displacement. To completely define the
boundary value problem, there exist boundary
,conditions Bji[w(r,t)] = 0.

i Solving the eigenvalue problem related

fto L and M taking into consideration the
;boundary conditions Bi, one obtains a set of
‘eigenfrequencies w;(i=1,2,...) and
jcorresponding eigenfuntions ¢ (r) (i=1,2,...).
jUsing the expansion theorem, the elastic

gdisplacement can be written as: ) i

i

W(r,t) = zi ¢i(r) qi(t) s (9)

14

twhere qi is a generalized coordinate
‘representing the vibration amplitude of the
i-th mode. Assuming modal damping and using
,Orthogonality properties of the eigenfunctionms,
1(8) can be transformed in a set of ordinary
{differential equations: i

¢
i

(10)

ot . 2 _
95 * 2 505 45 +u) qp =g (e,

1
i

vhere nj(t) are the modal inputs given by:
i

1 .
ni(e) = [ 4;(x) F(r,t) ¢ B . (1)
‘ E

!

If the first n vibration modes are taken :
into consideration in the original model, !
from (10) one can identify the plant matrix A
in (1) in the form of equation (12):

i

0 I
A=l o o | (12)

with I = identity matrix; Q = diag. (mi; i=1,

.o m); T = diag. (2gjwi; i=1,...n).

i Assuming that there are p concentrated
ifcrce actuators, the distributed force term in
;{(8) turns to be written in the form:

| F(r,t) = E
j=1

f.(t) 6(r-r.) . (13)f
1 ] X

From (9), the input matrix B according
.to (1) is given by:

T .
B =[0 BAJ with (BA)ij =¢i(rj). (14)

Finally, if there are q displacement
sensors placed at the positions rj(j=1,...,q),
the output matrix C in (2) can be obtained
from (9) written as:

i

c=1[0 Cé] wvith (Cg)p=0,(r).  (15)

Systems whose plant matrices have the
form given by (12) are said to be given in
modal description form. These systems have
some distinguishing features: the matrices
A and V are known in advance, and Viz and
V21 are null matrices.

Note that in the problem here addressed,
B and C depend on the type of actuators and
sensors and, in some sense, are not constant
matrices since they vary if the positions of
those elements are changed.

4 -~ ORDER REDUCTION METHODS

This section is divided into three parts.

The first one discusses some techniques for
selection of critical modes. In the second
,one, methods to obtain reduced models are
presented. Finally a comparison of order
-reduction procedures is presented, specifically
considering the control of flexible structures.
. .

%4.1 ~ SELECTION OF CRITICAL MODES

Bonvin and Mellichamp [1] proposed the
Generalized Structural Dominance Method to
obtain quantitative measures that can be used
to select the critical modes as well as the
'most sensitive state variables and the most
leffective inputs. They consider the response
‘of the i-th state variable

n P t 5
x.(t) = 2 2 P... J explA. (t-1)] u, () .
i . . sji i i
J=1 i=1 0 .
i
|
L (A an) : (16) .
where |
1% 3
Po:s =—- V.37 § u.b.. a7
sj1 sj Aj ket jk ki

Equation (16) holds true for any type of input
and the coefficient pg:; (independent from the
iinput) measures the importance of the i-th ﬂ
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finput/j-th mode/s-th state variable coupling.
iFor a fixed input, the analysis of psji values
iwill permit to select the critical modes and
associated state variables,

Litz and Roth [2] define a dominance
jmeasure that can be used to rank the modes
considering not only the position of the
eigenvalues in the complex plane, but also
observability and controllability properties.
iConsidering the output response

n
OR 121 hy; 8y5lexpOe)-11/2, (18)

i
i
i
1

!a dominance measure is defined for the i-th
‘mode:

: P h . g..
1 ki ®ij
A.) = — = 4 |y,
R(X;) g k21 (1/uk) 521 N Y (19)

1

AN

where px and Yj are normalizing factors.
‘Eigenvalues with larger indices R(X;) are the
dominant ones. .

1 Lastman et-al. [3]presented a method to
tselect the most significant states to be
jretained in a reduced model via the evaluation
;of the contribution of each state to the total
ioutput energy of the system. The mode
_selection procedure utilizes the A,B, and C
‘matrices, taking into account the relative
‘values of the coupling of each state to the
foutputs and inputs. Taking the response of the
<i~th component of the state vector to an unit
.impulse at the k-th component of the input
ivector

|

k
xi(t) =V, exp e) v,

where bk denotes the k-th columm of B, the
limpulse energy at the output is defined as
g T L. ”
fEk=[yydt = Z Z d..J x, (t)x,(£)dt  (21)
. . . ij i j
0 j=1 i=1

fwhere d;: are the elements of D==CTC. Making
ithe integration indicated in (21), the W
‘matrix is defined by

oo '

V., v,
v |, (0)x, (Odr =TT Iy Lk o)
ij i 3j A Iy
0 B+ v

I

If more than one input is to be considered at

sum of the columns of B. The total output
lenergy is given by

' E = tr[DW] = tr[P]. (23)
The most significant states correspond to the
elements of large magnitude of the output

energy integral participation matrix P = DW,

‘one time, bX should be replaced by the weighted.

(20)

!

Likins et al [4] used definitions of the
degrees of observability and controllability
of the original system as criteria for mode
truncation. Defining

n-1

Q= [BaB... A" 8] 5o =1t At TP T

(24)
they suggest that coordinate truncation should
be accomplished so as to minimally influence
the trace of (Q.Q.T)~", which is a measure of
the degree of controllability of the original
system. Another criterion proposed in [4] is
based on the scalars

8, =detlq Q1 ; 8, = det[qQ_ QZ] . (25)

'stating that for a given degree of truncation,
coodinates should be preserved which maximize
the ratio §,/6.. The scalars 8. and §, are
measures of the degree of controllability and
.observability respectively. It should be
stressed that these indices have to be
calculated for two systems: "with" and
"without" the mode candidate for neglection.

Hughes and Skelton [5] proposed a method
for selection of critical modes by taking into
account the contribution of each mode to the
total linear and angular momentum of the
vehicle. The formalism is developed for a
spacecraft composed by a rigid central part
having flexible appendages attached to it.
Hybrid coordinate description is used with
"rigid body" and "elastic'" modes of vibration.
The method requires the evaluation of
coefficients of linear and angular momentum
related to the i-th vibration mode of the
appendage, and given by:

tPi=J ¢idm ; H . =J ¥ ¢;dm ;Hyi=I x ¢, dm. (26)

X1
E E

The reader is addressed to the work of

Hablani [10] for more details. There are
identities which provide relations between the
coefficients Pj, Hy; and Hyi, and inertial
properties of the appendage like its principal
moments of inertia Ieyx, Iey and its mass Mg .
The following identities hold true if all
modes are considered.

| t

: 2 2 2

} P2em 5 ¥ m2 -1 Y m2. =1 . (27)
ist e ? .oy xi Tex joq Yi ey
7
The modes to be retained in the reduced system
are those which more strongly contribute to the
sums in (27). This method is based solely on
dynamical considerations, not taking into
account actuators and sensors.
4.2 - REDUCED MODEL EVALUATION

§
i
; Davison [8] proposed a technique to obtain
a reduced model in which only the dynamics of
the dominant modes is included and a

compensation is introduced to eliminate steady

i




{state errors.

The dynamic model without compensation is:

. -1 i .
x* = Vy; Ay Vip x*, + Vi1 gy Use (28)
i 1 i

The .essential and nonessential state variables
!are evaluated from using compensating matrices
iD1 and Dz that ensure steady state agreement
when unit steps are applied at the inputs:

p P
- - -1
X] = z Dlj_ Xi‘i 5 Xz = z D, V21 Vyq, x:i ,
é i=1 i=1
3 29)
i ,
i where ;
i !
: s s |
(V1y Aligi)j + (V12 A, g:)j
(dli)j = -1 1 3
(V11 A1 gl)j
' -1 i -1 i
(Va1 A7 g1). + (V22 A7 g3). (30)
RGP L R
] -1 i
. ] (Va1 A, gl)j

. The signal flow diagram corresponding to
‘Davison's Method is:
}

* -

u, i . i K11 +k
~] B zy =A121+g1ui Vi1 == Dli >
)
{ 21 + %
! Vorf=kiD,;
i i
i
!

_The main idea behind this method is, knowing
{ that the nondominant modes are also excited
{by the inputs, to make corrections in the
"dominant ones. Since the objective is steady
1 state agreement, transient errors can be
Eexpected.

Litz[7] presented a technique in which
:the nonsignificant modes are expressed as a
-linear combination of the significant ones.
_This combination is optimal in the sense that
;it minimizes the differences between original and
;reduced systems. Writing an approximation to the
‘noncritical modes in the form

;

Zy = E 2y (31)
EwhereAzl are the critical ones and defining the
ierror €j assuming unit step responses :

'
v

- i
g () =z - &y, (32)

3

jthe E matrix can be obtained so as to minimize
tthe cost:

® T
qj{ (Ej) (sj)dt ; q. =weighting (33);

p
J= 3
1=1 factors.

J 0

The reduced model equations are given by

Ky =M MM Ry +MGiu o, . oo

- -1 ~
X, =N M X1 (34)

where M=Vy; + V12E and N=V33 +V2E. Note that
here again, only the dynamics of the critical
modes is taken into consideration. The signal
flow diagram corresponding to Litz method is:

z1
—l-lo G, -—.21 =A12z1 + G1u Vi
Va1

E ] V12

Vaz

This method clearly implies a new eigenvector
orientation. The final reduced model strongly
depends on the choice of the input weighting
factors q3-

In the Singular Perturbation Method, the
original system is decomposad into two parts,
slow and fast ones. A reduced model, obtained
by considering only the slow part, is
improved via the introduction of corrections
for the effect of the neglected part. The
-original system equations are written in the
form:

X1 - A1r A2 xil Bi u
eX2 A2y Azz2| | x B,
x1: slow part

x2: fast part (35)

x1
¥y = [C1 C2] xa [ ° (36)

Georgakis and Bauer [8] suggested a method to
derive a reduced model, taking into account
a linear transformation:

Vi=X1 j Va=X2 + L X1 , (37

where L==AE§ A1 + eN. Note that AZ; must
exist. The essential idea of the method is to
obtain a transformation matrix N such that the
influence of vi over v, is eliminated. The
final form of the reduced model is:

Vi = Qo Vi + Equ ,

%
H

3

(38)

- -1 -
vz =~-Q22 (Q21 V1 +Eau) ,

y = (C1~CaLo)Vvi +C2 V2 .

iThe reader is addressed to [9] for more
‘details. The signal flow diagram for the
‘Georgakis and Bauer method is presented below:
Eo B -
R —+{v,=Qovy + E E =7
) 1= Qova o L vy rxl
u

2—4 Q21 Lo

-1 _ X2
E2 Jsi—-'qu

+ -
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'The Singular Perturbation Method presents the
.interesting feature of preserving the physical
"structure of the original system. Since the
dynamlcs of the fast modes is neglected, one
amay expect transient problems.

{4.3 - COMPARISON OF DIFFERENT ORDER REDUCTION
! PROCEDURES

'
i

| The control of flexible structures has
.distinguishing characteristics that influence
the choice of an order reduction technique.
Dynamic models derived by either modal
analysis or by the Finite Element Method imply
modal coordinates. Whichever the approach, the
accuracy of the higher modes is poor, so the
‘lower ones in some sense are more critical.
“The input and output matrices are not
"constant", since they depend on the placement
-of actuators and sensors which can be changed.

Under this point of view, methods that
consider the system dynamics as well as
,observability and controllability measures are
"more suitable. The Dominance [1] and
Participation [3] Methods fulfill these
9requirements.

For structure dynamlc models, the reduced
:model obtained by Davison's Method does not
‘succed as a consequence of being based on the
‘coupling between critical and noncritical
modes. The Litz's Method seems to be an
. interesting approach due to the involved
!optmization. The use of the Singular
. Perturbation Method in this case might give
§rise to transient problems because the slow and
+ fast eigenvalues may be close.

5 -~ ACTUATORS AND SENSORS ARRANGEMENT

i
i
i
i Since the lower modes are the critical
iones under a dynamical point of view (they
bare determined with higher accuracy), the
obJectlve here is, using the Dominance Method
{1} previously discussed, to determine
éactuators and sensors configurations for
iwhich these modes present high dominance
ilevels and the higher modes show less
"importance (with respect to that criterion),
This section is devided into three parts
“presentlng modal data for the investigated
structures, dominance measure distributions
and discussion of the results.

5.1 ~ INVESTIGATED STRUCTURES

In order to obtain mode dominance
‘distributions for several configurations of :
factuators and sensors, two structures have :
‘been investigated [9]: i) a free-free ;
luniform beam; ii) a completely free rectangular
plate. The modal data for both structures are
'presented following:

'

L - TABLE 1

FREQUENCIES OF THE LOWEST EIGHT FLEXIBLE
MODES OF THE f-f BEAM

Mode Wi w/w,
No. (k)| (xd/s) -

.62831 1.0000
1.7321| 2.7568
3.3954] 5.4041
5.6128| 8.9333
8.3846{13.3449

11.7107[18.6387
15.5911(24.8147
20.0259(31.8732

W~ BN -

— Free-free beam characteristics:

. length = 100m

. width = 1m

. thickness = 0.2m

. material = - steel m = 1540 kg/m

- aluminium m = 540 kg/m
— for both materials

-
VE/p = 5000 m/s.

VAL

' Fig. 1 - First flexible modes for
the f-f beam.

TABLE 2

FREQUENCIES OF THE FIRST NINE FLEXIBLE MODES
OF THE COMPLETELY FREE RECTANGULAR PLATE

Mode Wy wk/wf wk/w)_
No. | (rd/s)

0.01195) 21.3750]1.000
0.01831} 32.7536(1.532
0.03321]| 59.417312.779
0.03938| 70.378913.295
0.06486(116.044115.428
0.06578}117.689115.505
0.07808(139.6880(6.534
0.08519(152.4128|7.129
0.10007(179.0224(8.374

O 00NN DN =

- Completely free rectangular plate
characteristics:

. flexural rigidity D: 20x 10°N m

. Mass per unit area: 0,2622 kg/m?
. Length: 12,5 km

. Width: 5.0 km

e
|
i
i
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Fig. 2 - First nine flexible modes of the
completely free rectangular plate.

5.2 -~ DOMINANCE MEASURES DISTRIBUTIONS

Two types of colocated (placed at the same
position) actuators and sensors have been
investigated to evaluate mode dominance
distributions: concentrated force actuators
with displacement sensors and concentrated
torquers with slope sensors. For the plate,
pairs of torquersand slope sensors (x,y

; directions) have been utilized.

Dominance distributions are given in form
of histograms, each one having a sketch beside
illustrating the position of colocated
actuators and sensors. The dominance values
are nondimensionalized such that the maximum
value is always equal to 100.

Figure 3 shows mode dominance
distributions for the f-f beam with 1,3 and 5

force actuators and displacement sensors.
i

100 .

1 2 34 56 78 -

x

1

i
i
1

Fig. 3 - Dominance distribution for the f-f
beam with force actuators and
displacement sensors.

t

Note that when solely one force actuator is

placed at the center of the beam, only modes

no, 1,3,5,7 are excited as can be seen from

Figure 1.

Changing the type of actuators and
sensors, Figure 4 illustrates dominance
distributions for the f-f beam with 1,3 and
5 torques colocated with slope sensors.,

100

l | 1

12 3 4 56 7 8

x

x

Fig. 4 - Dominance distributions for the f-f
beam with torquers and slope sensors.

For one torquer placed at the center of the
beam, only modes no. 2,4,6,8 have dominance
indices different from zero because they
present slope different from zero at that
point (see Figure 1).

Considering the completely free
rectangular plate, Figure 5 presents mode
dominance values for 1,3 and 5 force actuators
placed at the center and corners of the plate.

H 12 34 5 678 9

Fig. 5 - Dominance distribution for the
completely free plate with force
actuators and displacement sensors.

!Since only modes no. 1,5 and 7 have
‘displacement different from zero at the center
fof the plate, these are the modes with
dominance indices in Figure 5 when one force

actuator is positioned at that point.

| Figure 6 presents dominance distributions
"for the completely free plate with pairs of
torquers colocated with slope sensors at the
same positions of Figure 5.

100

1234 586 7 8 9
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Flg. 6 - Dominance distribution for the
completely free plate with pairs
of torquers and slope sensors.,

From Figure 2, it can be seen that only
mades no. 3,4,8 and 9 have slope not null at
the center of the plate in either x or y
directions. These are the modes with dominance
indices different from zero if only one pair
of torquers is placed at the center of the
plate.

In all the cases presented here, the
relative importance of the modes decreases as
their eigenfrequencies increase but Figures 4
and 6 clearly indicated that mode dominance
distributions are strongly affected by the
number, position and type of actuators and
sensors used.

5.3 -~ DISCUSSION OF NUMERICAL RESULTS

The placement of actuators and sensors at
points where either the displacement or slope are
maximum (corresponding to force actuators and
torquers respectively) for the majority of the
modes, often imply a dominance distribution
for which the lowest modes have the highest
dominance levels.

For the beam, dominance distributions
-indicate that the first two modes are the
critical ones in most of the cases. It is
‘interesting to observe that torquers and slope
sensors tend to produce higher dominance
-indices, when compared with force actuators
with displacement sensors.

’ For the completely free rectangular plate,
the obtained dominance distributions show

~that the determination of how many and which
modes are the most significant ones depends
istrongly on the actuators/sensors
configuration. In a rough sense, the importance
:of the modes decreases as modal frequencies

{ increase, but some unexpected behaviour could
?be observed [9].

56 - CONCLUSIONS

i

; In retrospect, this work considered two
problems related to the dynamics and control
of flexible structures: the evaluation of a

! reduced model and the definition of a
#configuration of actuators/sensors.

From the analysis and comparison of some
| order reduction procedures here investigated,
i the general conclusions are:

I
k. selection of significant modes should be

B e e G A R e T s e PR——

based on indices that take into account the
system dynamics and measures of observability
and controllability.

reduced order models generated by modal
approaches or by the Singular Perturbation
Method are particularly convenient because
they provide an explicit formulation for
the reduced model.

. for systems in modal description form, such
as vibrating structures, the methods of
Litz and singular perturbation seem to be

promising.

From the numerical tests performed with
the two structures here presented, varying
the type, number and position of actuators/
sensors, it can be stated that:

. the dominance measure [1] is an interesting
tool that can handle selection of critical
modes and definition of actuators/sensors
configurations.

care must be exercised while specifying
those configurations because sensitivity
analyses indicate that some modes are much
more influenced than others by placement
changing.

Finally considering the control of other
distributed parameter systems, different from
vibrating structures, the results from this
work remain useful requiring only the system
equations to be discretized and written in
standard state variable form.
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