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1 - INTRODUCTION

In problems of state estimation, a common
gituation is that of having to adopt a dynamic.
model for the estimator which is only a crude
approximation of reality. To avoid divergence, :
specially in the case of nonlinear dynamlc
systems, extended and adaptive versions of the
Kalman filter have been used {e.g.: Jazwinski,
1970; Maybeck, 197%; Celb et alii, 1974).
Usually one explores the information given by -
‘the observations residues to either directly
estimate the unmodelled effects (Tapley and :
Ingram, 1973; Cruz and Rios Neto, 1980} or to |
condition the state error covariance matrix to
keep the capability of the estimator to '
extract information of new observations (e.g.::
Jazwinki, 1969; Rios Neto and Fuga, 1981, !
1982, 1985). In the procedures resulting from
these approaches there is always an increase
in the number of variables to be estimated.

The proposed procedure presents an
alternative scheme for the state estimation
problem, specially for nonlinear systems. The i
concept of duality between the estimation and |
the optimal control problems is used to
transform the original estimation problem in
one of tracking the observations with a virtual
control. Without the need of increasing the
number of estimated variables, the :
observations residues are used to estimate the !
virtual control necessary to update the
estimate of the state. The virtual nature of
the tracking contrel allows the possibility
of choosing control actions adequate to better
extract the information contained in the !
observations (Rios Neto and Fleury, 1984; ;
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Fleury, 1985). This makes the procedure
specially indicated for situwations where there
is a great lack of system dynamics knowledge,
but there is a high local level of information
in the observations.

A preliminary test of a first version of
the procedure was done under digitally
simulated conditions. This was dene for the
problem of real time orbit determination of
a low altitude artificial satellite and the
results are shown to be satisfactory.

Atair Rios Neto
Agenor de Toledo Fleury
Instituto de Pesquisas Espaciais — INPE/MCT
S3c José dos Campos - 12200 - C.P, 515 - Sdo. Paulo - Brasil

ABSTRACT

This paper presents the development of a new estimator for the appﬁomzmate
estimation of the state of nonlinear dynemic systems. This estimator uses the
duality between state estimation and optimal contrel problems to create an
adaptive algorithm. This algorithm is then implemented in a digital computer
to estimate the orbit of a low Earth orbit sateilite under simulated conditioms.
Numerical results are presenied and discussed, as well as the theoretical
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2 « PROPOSED PROCEDURE

i Consider the state estimation of a
idynamic system of the type: |

%= £+ 0,0+ T W), 0

{2)

‘ i
‘y(t ) = hy (x(t ¥t )‘+ v(t ), k=1,2,...,
|
|where x is the nx 1 state vector; w(t) and
iv(ty) are rx 1 and mx 1 independent Gaussian

white noises with the usual hypothesis of w(t)

‘being
being

independent of past states and v{ty)
independent of the state, with .

-dlstrlhutlons defined by zero means and

'covariances: - 1

QE)é(e-1); E[v(t )v (t 1] =

E[w(t)wT(T)] 5

RGOS,

(3)
J -

where §(t-t) is the Dirac delta function and
5kJ is the Kronecker Symbol. ‘
In this problem, i {x,t) represents the
‘unknown part of the dynamical model, which
'usually can not be included in the medel of
'the estimater. In a typical discretization
'interval, (ty.tk+), the prediction phase of
an extended Kalman filter (e.g. Jazwinski,
11970), a nominal . trajectory is generated by:
_ - |
i x = £G,t) . x(g) = % /r) i (4)
' x(t /ty) is the estimate in tys and a
order approximation of the propagated
is given as:

'where
first
‘error
Ax(t

) = (L ,tk) sx(e, ) +

k1

i
|
f
\
k41
+ J ¢(tk;t,5)§Ts)w(s)ds , (5)
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k{ % By to -9 by E (e, T 7= T o, ,,57G(E)ds) ﬂ(tﬂj
and the subindex x is to indicate a partial ™ J |
derivation with respect to the state, ' I
The propagated error can be regarded as ? Ay (et k) ule) -, | (16)
the a priori informatiom in tisq, which is the - f
information based on previously prbcessed where .(t,tx) is the transition matrix
observations: associated to Equation (14). From the
| _ . : linearization of Equation(i4) one gets:
. Ax(tki1) = &x(tk+1/tk) + nlk+1/k), (7} ; |
! AyCt, ) = —nh (& (e, J,t 0
and if the approximation of Equations (4) and ket ax, Tkt e AN L
(5) are assumed, there results: _ 5
. Axc(tkﬂ) +_v(tk+1) s ,‘ an

|
bxftk+1) =0 +nlk + 1/k) , (8)

|
where n{k+1/k) is zero mean conditiomed em the
observations already processed with
covariances given by:

. | .
E[n{k+1/k) T (k417D ] A P(k+1/k) =

i
*

°(‘k+1"k? PR/ BT (E,, 0t ) 4

St | S
+ I ¢(tk+1,5)G(S)Q(s)G (s)ﬁ(tk+i,s)ds. (9}

\
tk ‘

e

In the proposed procedure the state

estimation of the system in Equation (1) is
approximated by the estimation of a "virtual
control”, defining:

%, = Elx_,t) + G() u(e) . 10)

X
i
i

The control ult) is to be estimated to force

the controlled state x. to be a good
approximation of x by tracking the observations
of Equation (2}. This is done by assuming the
control to be a first order perturbation and
taking 1n\a typical (tk,tk ):

t

+1

X = fgc,t) . R = ®(r /), ()

Agc=fx(;;,mxc+c(t>u(t), ax (£ = 07, (12)

where u{t) is medelled as a step process and
caleulated to satisfy:
S k)

EAx (¢, )= axle

¢ k+l
I .

LAY =;hk+1(;c(tk+1) vox (e it ) 4

k+1) ?

+;V(tk+l)' (14)
I .
From Equaﬁions (8) and (13), there results:
|
0= Axc(tk+|) + nlk+i/k) . (15)

|
But from Equation (12) one obtains:

where high order tetms have beem disfegarded.
Finally, combining the results of Equations :
€15), (16) and (17), the following problems |
of parameter estimation result:

- '
0= y(k+l,k) u(tk) + nlk+i/k) 1, (18>

i

[
Ay(tk‘J) =H(k+1)7(tk+1,tk)u(tk) +v(tkl+ ), (19}

where

)

5 — .
H{k+1) : SEZ'hF+1(xc(tk+1)’tk+1
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Using a Gauss-Markov minimum variances

estimator (e.g. Liebelt, 1967 and Maybeck, 1
1979), estimates of u(tk) are obtained: g

G(tk) = Pu(k+1/k).TT(k+1,k).HT(k+i)

:
"

. |

CR ) By(e L) : (20)

’ i

P (ke1/K) = T OB e /107 (e ,K)

o yTert, R (e DR G DG+ DY T ke OV,

| en

) T |
where R(k+1) and P{k+1/k) are as defined in

'Equations (3) and (9). i

. To recover the estimate of the ﬁtate, one ;
combines Equatioms (16) with (20) to get:

(22)

]
- ; . i
Axc(ck+1) =‘Y(k+1,k) ade) :
and takes the approximation: !

i

Rle,, (b)) = Ko, lh) + 8205 ). (2D

|
To recover the covariance matrix of the
error in the estimate, it is only necessary
to consider Equations (13), (16) and (23) ro
get:

+ _‘ ..‘ - W}
e(ck+!/tk+1)g x(tk+1) x(tk+1/tk+1)-—;\xc B¥

! (24) |
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P(k+1/k+1)£ E[e(t

E= Yr1/K)P (e 1 /R0y TGer1/k) L (25)

T
k-i-1ltk+1)e (tk+1/tk+1))‘

To oLetcome the ill-conditioning in the
state error covariance matrix due to the
approximation of Equation (5) in the
propagatlon of the error and due ‘to the
{nonlinearities in the observations, in the
appllcatxons both P(k+1/k} and P, {k+1/k) are
tadapted using the procedure by RlOS Neto and
‘Kuga {1985, see elsewhere in these
proceedings).

3 - APPLICATION

The procedure was tested under digital
simulation {(Burroughs 6800) for the case af
real time orbit determination of a low
altitude satellite with:

zero excentricity, 42° inclination, 250 km
altitude,

Afm = 0.00076m2/kg, area over mass ratio,
f

CD = 2,0 drag coefficient.

To simulate the observations, a true
orbit was generated by numerical integration,
using a dynamic model including the influence
of: gravity {(up to Js zonal and Cuys, Syn
tesseral coefficients), atmospheric drag, and
perturbations of Sun and Moon. The
ebservations were generated combining this
orbit data with the locations of 3 fictitious
symmetric topocentric tracking stations, to
get at each 1 second range and range-rate
values, contaminated by white Gaussian noise
with standards deviations:

| ‘
! = =

1% 10.0m 9% 0.im/s .
|

To imitialize the estimator, errors of
1000 m and 10m/s were considered in peosition
and velocity, respectively, with a state ;
error covariance matrix with variances of
9x 10°n® and 9x10%m®/s2, respectively. !

The model adopted for f(x.,t), |
Equation (10), only included the graVLtatlonal
effects up to J2, thus characterizing a
situation of lack of knowledge quite serious
in the dynamics of the system.

The virtual control in Equatiom (10) is
8 3x1 vector since it is possible to
"eontrol an orbit™ using three independent
forces, one for each axis., For the matrix G(t)"
the following structure is used:

C I3
P
G(t) = , (26)

C
v13

——— -

where the: scalars were taken Cp =5.0: cv =2.0.,

| ___ Note that the matrix G{t) has to
guarantee the necessary contrellability
;conditions over the typical interval (t

k 1)

The, results obtained are shown. in Flgsh
i1 and 2, where the following residues are
:defined for position and velocity:
: |

: = T
bv(e, )8 (i£1[xi(tk)—xi(tkftk)] I

B (e, )8 (2 ; (k/k)}/z : Can

- i=1

1
sv(t)a ( )j [x £) - %, (¢ /tk)]’)/2 .
i=4

K5, )8 ¢ P ANE
i=4

(28)
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Fig. 1 - Estimated and actual errors
in position.
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Fig. 2 - Estimated and actual errors

in velocity

The analysis of these figures shows that
the state estimatives converge on values close
to the true orbit. The 1000 m and 10m/s
initial errors in position and velocity are
reduced to approximately 30m and O.4m/s.
Although the final errors are reasomably
‘small, the interval of time for convergence 1is
qulte long, notice also that the estimated
'errors in,the transient phase of convergence
;are very optimistic when compared to the
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real ones. These characteristics“show,thaq_,“_

order to get valyes for the parameters in
matrix G(see Eq. (26)} to veach a better
performance,

4 ~ CONCLUSIONS
—te

by the observations.

In this work, one only starded to explore
the possibilities opened by the virtual nature
of control in Equation (10}, Presently, efforts
[Te being done to further explare these i
Possibili;ies, mostly in terms of the structure’
jof G6(t) and of treating the determination of
this matrix automactically and adaptively
(Pleury, 1985).
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