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1. INTRODUCTION

A very common situation arising when one has to estimate the state
of a multivariable system is the problem of lack of knowledge about the
system dynamics. In this case, one has to adopt a dynamic model for the
estimator which is only a crude approximation of reality. Unmodelled
dynamic effects, specially in the case of nonlinear systems, can cause
divergence of the estimates.

In order to avoid divergence, error compensation techniques are
usually employed with different versions of the Kalman Filter (e.g.
Maybeck, 1979, Jazwinski, 1970; Gelb et al., 1974). The techniques
usually explore the information given by the observation residues to
either directly estimate the unmodelled effects (e.u.: Tapley and
Ingram, 1973; Cruz and Rios Neto, 1980; Rios Neto and Cruz; 1985) or
to condition the state error covariance matrix to keep the capabitility
of the estimator to extract information from the new observations (e.q.
Jazwinski, 196%; Rios Neto and Kuga, 1981, 1982, 1985). In the resulting
procedures there is always an increase in the number of variables to be
estimated.

This work presents a new alternative scheme for the multivariable
state estimation problem, specially for nonlinear systems. The duality
concept between the estimation and optimal control problems is explored
to transform the original estimation problem into one of tracking the
observations with a virtual control. The key idea is that, independently
of the dynamic model for the estimator, if the system is completely
controllable and observable, one can choose a desirable control action
to drive the system towards a region defined by the observations, in
a finite time interval. Whithout the need of increasing the number of
estimated variables, the observation residues are used to estimate the
virtual control necessary to update the estimate of the state. Besides
that, the virtual nature of the tracking control allows the possibility

of choosing the control actions adequate to better extract the information

contained in the observations (Rios Neto and Fleury, 1984; Fleury, 1985).




Therefore, the proposed estimator is indicated for situations where
there is a great lack of knowledge about the system dynamics but there
is @ high locallevel of informatien in the observations.

The virtual formulation also allows to get some advantages from the
system structure. As will be explained in item 3.2, one.can define a
control matrix correction in order to improve convergence,

Preliminary tests of the proposed estimator were done under digitally
simulated conditions for the problem of real time orbit estimation of a
low altitude artificial satellite. Results are shown to be satisfactory
for this exploratory phase of the procedure.

2. PROPOSED PROCEDURE

The problem to be solved is the state estimation of a multivariable
dynamic system of the type:

x = f(x, t) + " (x,t) + Gt) w(t), (1)
y(t) = hy x(t), ) +vlt), k=1,2, ... (2)

were x is the nx1 state vector; w(t) and v(tk) are mx1 and rx1 independent
Gaussian white noises with the usual hypothesis of w(t) being independent

of the past state and v(tk) being independent of the state, with distributions
defined by zero means and covariances:

.

Efw{t) w(<)] = Q{t) s{t-1), (3)
T

E[v(tk) v (tj)] = R(k) 5kj, (4)

where &(t-t} is the Dirac delta function and ékj is the Kronecker symbol.

In this problem, the term f'(x,t) in Equation (1) represents the unknown
part of the dynamical model, which usually cannot be included in the estimator
model because of lack of knowledge about the system dynamics. Consider now
a typical discretization interval, (tk, tk+1)' In the prediction phase of an
extended Kalman filter (e.qg. Jazwinski, 1970), a nominal trajectory is
generated by:




X = fOGE) 5 X(t) = Xt [t) (5)

where i(tkltk) is the estimate in t,.

Linearizing the system given in Equation (1) around the nominal
trajectory and defining:

ax(t) = x(t) - x(t), (6)

one obtains a first order approximation of the propagated error as given
by:
tk+1
ax{ty ) = o(t, g0t ) ax(y ) + J 2 (tk+1,s) G(s) w(s) d(s). (7)
Y
In Equation (7), #(.,.) is the state transition matrix associated
to the linear system:

ax(t) = f, (%) ax(t) + E(t) w(t), (8)

that is:
o(t,ty) = £0%,t) alt, t,) 5 olty, t) =1 (9)
where the subindex x indicates a partial derivation with respect to the

state.

The propagated error can be regarded as the a priori information in
Y which is the information based on previously processed observations:

ax{ty,q) = oX(t, [t ) + nlke1]k). (10)

Since the nominal trajectory was taken with the initial value in ty
equal to the estimated value at that time, then the propagated estimate
in tk+1 1s necessarily zero. Therefore, if the approximations of Equations
(5) and (7) are assumed, there results:




ax(ty 1y = 0+ nlket k), (11)

where n(k+1]k) is zero mean conditioned on the observations already
processed with covariances given by:

ECn(ke1 [K) n' (ke [K)T & P(ke1]K) =

T tk+1 _ T
CI)(tk+1,tk) P(kk) (tk+1,tk) ¥ o(t, 4»8) G(s) Q(s) G (s)

®T(tk.1,5) ds. (12)

In the proposed procedure the state estimation of the system in
Equation (1) is approximated by the estimation of a "virtual control".
Defining:

Xe = f(xc,t) + G(t) u(t), (13)
the control vector u(t) is to be estimated in order to force the controlled
state x_ to be a good approximation of the true state x by tracking the
observations given by Equation (2). From an heuristic point of view, the
idea is quite simple.

Consider a typical interval (tk, tk+1)' Since the model of the estimator
is not a good approximation to the real system,within the interval tk to
tk+1,the propagated trajectory will deviate relative to the true one. A
control action, based on the observations residues, is then calculated
in tk+1 to update the estimate of the state vector. This action changes
the initial condition for the nominal trajectory in tk+1 up to a
point closer to the true trajectory than the original one. In some sense,
this procedure resembles the extended Kalman filter but it must be
pointed out that the virtual control scheme requires a number of estimated
control components just equal to the number of degrees of freedom of the
system (controllability) and also requires a number of observations with
enough level of information which guarantees the calculation of the control




action in L (observability)., There results an adaptive procedure
that forces the dynamic model in the estimator towards the true
trajectory.

To obtain the control Ut) in the interval t, to tk+1’ one assumes
u as a first order perturbation and takes the controlled trajectory as:

X. = f(xc,

t) . X () = X(t [t ). (14)

Using the same steps given by Equations (6) and (7):

= fx(iﬁ’ t) X+ G(t) ult) , Axc(tk) = 0, (15)

where u(t) is modelled as a step process and calculated to satisfy:
AX (tk 1) (tk+1)’ (16)
y(tk+1) hk+’l( C( k+1) +oAX (tk+1)’ tk+1) * V(tk+’|)' (17)
From Equations (11) and (16) there results:

0 = ax (t

HC n (k+1]k), (18)

But from Equation (15) one obtains:

[tk+1 \
v (tk+1=s) G{s) ds) u(tk) 2 y{k+1,k} u(tk) (19)

i,

where ¢C(t,tk) is the transition matrix associated to Equation (15). From
the linearization of Equation (17) one gets:

d
) = T P Belbinds Bgq) axclty )+ vl (20)

where high order terms have been disregarded.



Finally, combining the results of Equations (18), (19) and (20),
the following problem of parameter estimation results:

0 = v(k+1,k) u(t,) + n(k+1}k), (21)
Ay(tkﬂ) = H{k+1) v(k+1,k) u(tk) + v(tk 1), (22)
where
A 3 — \
Hlke1) = o et Lt tay)- (23)

Using a Gauss-Markov minimum variance estimator (e.g. Liebelt, 1967
and Maybeck, 1979), estimates of u(tk) are obtained:

Tty = Pkt k) wlket, ) BT (ket) R (kat) eyt ) (24)

P k1K) = [ (ket, K) P (kat KD (ka1 oK) + ¥ (Ket, K)

T

H (k1) R77(k+1) H(k+1) v(k+1,K)7, (25)

where R(k+1) and P(k+1]|k) are as defined in Equations (4) and (12).

To recover the estimate of the state, one shall combine Equations
(19) and (24) to get:

Axc(tk+1) = v{k+1, k) ut,) (26)
and take the approximation:

Kepltn) = Xy lt) v Xt p). (27)

To recover the covariance matrix of the error in the estimate, it is
only necessary to consider Equations (16), (19) and (27) to get:



A - -
eltapltig) S Xt ) - Ryl Deax - (28)
and

P(k+1|k+1) & E{e(tk+1|tk+1) eT(tk+1Itk+1)] = v(k+1,k) P (k+1]k).

Tkt k) (29)

3. APPLICATION

The procedure was tested under digital simulation {Burroughs B6800)
for the case of real time orbit determination of a low altitude satellite
with:

Zero excentricity, 42° inclination, 250 km altitude,
A/m = 0,00076 m?/kg, area over mass ratio,
Cp = 2.0, drag coefficient.

To simulate the observations, a true orbit was generated by numerical
integration, using a dynamic model including the influence of gravity
(up to Js zonal and Cys, Syy tesseral coefficients), atmospheric drag
and perturbations of Sun and Moon. The model adopted for f(xc,t), in
Equation (13), only dincluded the gravitacional effects up to J,, thus
characterizing a situation of lack of knowledge quite serious in the
dynamics of the system. It is shown in Kuga (1982) that the application
of the Extended Kalman Filter to the same problem, whithout any error

compensation technique, cause divergence of the estimates.

Bearing in mind the approximations taken in the proposed procedure,
one must expect some difficulties in dealing with this type of problem.
Therefore, error compensation techniques are employed.

3.1 - ADAPTIVE STATE NOISE ESTIMATION

The overcome the ill-conditioning on the state error covariance matrix
due to the approximation of Equation (7) for the propagation of the error
and due to the nonlinearities in the observations, within the applications



both P(k+1|k) and Pu(k+1|k) are adapted by using and Adaptive State Noise
Estimation technique (Rios Neto and Kuga, 1981, 1982, 1985). This technique
is the generalization of a procedure by Jazwinski (1969) and consists of
adding noise to the system through the state noise covariance matrix Q.

Consider the typical interval (tk, tk+1) and assume that Q(k) for
this interval is diagonal or can be diagonalized:

9. Q
QCk) = [ *™~ 0 | (30)

Defining the observation residue, r(k+1|k), and the true residue
r (k+1]k), as:

i

rlket]k) = y(t, ) - ¥(t, ), (31)

r{k+1]k)

rv(k+1|k)+vk+], (32)

where ?(tk+1) is the observation vector calculated with the propagated
state? rv(k+1|k) is the observation residue which would be obtained if the
observations were not contaminated by noise.

Now, the parameters qi’k’ i= 1,..., m must be chosen 50 as to maximize
the probability of occurrence of the true residue rv(k+1|k), that is, the
criterion to calculate CFFN i=1,..., mis stated by:

max p [rv(k+1|k)]. (33)
gz0

It can be shown {Jazwinski, 1969; Rios Neto and Kuga, 1985) that this
criterion leads to:

(ry(ket k) = ECrS (ket [K)1, (34)

where the subindex is to mean the occurred value of rv(k+1|k).

Developing both sides of Equation (34), accounting for Equation (32)
and manipulating them properly, there results an expression called



Pseudoobservations Equation, which allows to calculate the parameters
95 k> in the form:
>

Y ) = B ) 9t Ve (35)

where y'(t te, 1) is the r x 1 pseudoobservations vector, q) is the m x 1

vector which contains the parameters 9; Kk to be estimated and v’ K+ 1

is a r x 1 Gaussian white noise (see Append1x for the necessary steps
to obtain this equation).

The solution for q, can now be obtained through the use of a linear
Kalman Filter,

EmpToying the technique described above, Pu(k+T[k) is substituted for:
Po (kel[k) = Pulket]k) + 0 (ks [K) (36)

in Equation (29}, while P(k+1|k) is generated by:

Plat]k) = olket k) P(KIK) o (kel, K) + 7(k) Q(K) TT(K), (37)

where

Generally, when one is faced with the problem of state estimation
of mechanical systems, it is usual to have the matrix G in:

x = F{x,t) + Gu(t) (38)

as:



T - [_9@:@25@ ] (39)

where 0 and I are the null and the identity matrices, respectively.

This means that the coefficients in G just make the coupling between
the state variables and noises.

In the "virtual control"context it is possible to define the control matrix
G in Equation (13) in order to augment the coupling between estimated
controls and state variables and thus accelerate the procedure convergence,
In this paper, three types of corrections for the control matrix G are
proposed. In what follows, a forced variable is defined as a state variable
which is directly excited by noise in Equation (38). The other state
variables are called nonforced variables.

3.2.1 - DIRECT CORRECTION

" The simplest form to define a control matrix with the characteristic
described before is to consider:

6= | RREm (40)

where Cp and Cv are positive coefficients, held fixed during the time
propagation.

Despite the advantage given by the simple form, this correction
technique has the drawbacks of using a trial and error method to choose
Cp, CV and of adding the corrections to the state variables with the
same sign,

3.2.2 - RESTORATION

The idea of restoration was first used in numerical gradient-1ike
methods to solve optimal control problems, where one has to deal with
different requirements of searching a gradient step towards the extremal
and satisfying the terminal constraints {(Miele, 1975).

In the present case, restoration is used to modify Cp and ¢, in
Expression {40), thus giving priority of convergence to either the



forced state variables or the nonforced state variables, depending on
the system behavior. In order to make a decision to change C and C

a convergence measure must be available. Estimated errors, e for the
nonforced variables and e, for the forced ones, and defined by:

e 11/2
e, (k) = (—1-— IoPLkl| (41)
n-mo,. |i=1 i
m 11/2
e, (k) = —— | ; P (k]K) : (42)
Mo, [1=n-m+1 i

can be used to indicate convergence. In Equations (41) and (42), Pii are
the elements on the diagonal of the P (klk) matrix and o p» 0, represent
the expected standard deviation of the errors between est1mated and true
variables after convergence of the probiem. With these definitions, e
e, = 1 mean convergence to the true trajectory. The technigue can now
be implemented through the following may: the procedure is initialized
with the Direct Correction; after W steps, a test is done. If ey > 2 and
e, > 2, Cp and €, @re not changed, if 0< €< 2 and e, 2, only CV is
changed; if 0< e, <2 and ep > 2, only Cp is changed and finally, if

0 < ey < 2 and 0 < e, < 2, both coefficients are changed. Propagation

is started again with the new coefficients and after n steps a new test
is done,

]

With this technique, besides the simple form, coefficients Cp and CV
are changed during the time interval of interest. However, the same
disadvantages described for the Direct Correction are still present.
3.2.3 - AUTOMATIC CORRECTION

In the automatic correction technique, matrix G is generated at each
step inside the algorithm, reinforcing the adaptive characteristic of
the preposed procedure. Determination of the elements in G is done by
solving,step by step, a deterministic linear optimal control problem.
This contrel problem arises if one considers the estimation procedure
as a controller that must drive the system from a given point 1in ty
to satisfy the observations in tk+1’ as mentioned before. Consider, for



(tk, tk+1)’ the propagation of the first order perturbation ax:

AX (tk+1) = o{k+1, k) Ax(tk) + v(k+1, k) u(tk) (43)
Assuming that the G matrix is constant in this interval:
tk+1 tk+1 A —
v(k+1,k) = @(tk, s) G(s) ds = @(tk,s) ds |6, = B, Gy (44)
Y Y
and using Equation (44) in (43);:
Ax(tk+1) = o(k+1, k) Ax(tk) + Fka u(tk). (45)

Consider now that all terms in the right-hand side of Equation (45)

are known except the G, matrix. In Yo it is expected that Ax(tk+1)
15 calculated to satisfy the observation residues Ay(tk+1) and this
corresponds to minimize a quadratic criterion given by:
T
U= Day(ty ) - Mgy ax (8, )3 Tay(ty ) - Higqex(t 01 (46)
subject to the constraint given by Equation (45),
Defining Gk as:
o k 9~ 0
Gk N § n-m,m (47)
Go k on-mt
| 0 T ~gn,m ]
and making:
L) (48)
aGk

there results a linear system to calculate the nonnull elements of the
Gk matrix in the form:



Dyst 9 = Ay(tk+1) - Hq olket, k) ax(t,), (49)

where g, is the nx! vector of elements 954> as in Equation (47).

It is important to point out that the Dy .1 matrix in Equation (49) is
(rxn) dimensional and, thus, the Tinear system shall be solved by a

deterministic least squares method or by and equivalent recursive method,
if r £ n,

The automatic correction technique has the distinguished feature of
providing coefficients for Gk adjusted at each step, with variable signs
and modules. However, an one-step lag has to be imposed to Gk since it
was admitted that terms of Equation (45) were already known. This means
that matrix Gk, which will be used in (tk, tk+1) is calculated with the
values obtained in (tk+1’ tk). Another problem to mention is the fact that
one can only use estimator propagated states in the technique and this
represents only an approximation to the true states.

A1l the techniques to correct matrix G were applied to the orbit
estimation problem. Results, as will be seen, were very satisfactory. As
a final remark, it must be said that these techniques were developed for
the general case and canbe used with the proposed procedure in different
problems (Fleury, 1985).

3.3 - OBSERVATIONS

In the test problem of orbit estimation of a low altitute satellite,
observations were generated combining the true orbit data with the location
of 3 fictitious symmetric topocentric tracking stations, to get at each
1 second range and range-rate data, contaminated by white Gaussian noise
with standard deviations:

c =10.0m; o- = 0,1 m/s.
D p

4. RESULTS

Results for the two cases, where different initial conditions are
taken for the proposed estimator, are shown in this section. The virtual
control u(t) in Equation (13) is a 3x1 vector since it is possible



to "control an orbit" using three independet forces, one for each axis.
Parameters for analysis are true and estimated position errors, true
and estimated velocity errors and range and range-rate normalized
residues given, respectively by:

3 2
ar(k} = {;z, [x;(k} - ii(k)jz}# k=1,2, ... (50)
3 1f2
sr(k) = {534 Pyi(k[KD} k=1,2, ... (51)
6 _ y2
sv(k) = (g, [x50k) - X, (k)12) k=1,2, ... (52)
Sk 6 e
8v(k) = {5z, Pui(k]k)} k=1,2, ... (53)
1 e -
(k) = —— Gy Dy, (k) - 5K k=1,2, ... (54)
e %
e 5
rg (k) = f.g, (k) -y, (k)13 k=1,2, ... (55)
ne o 1= p Y

where Y5 ¥5 are the actual (simulated) observations of range and range-.
rate respectively and yb, Ea are the estimated observations of range and

range-rate respectively. In the definitions (54) and (55) n, means number
of fictitious stations observing the satellite.

To guarantee convergence the true and estimated errors must converge
to the same small values and the range and range-rate normalized residues
must lie between the Timits ¥ 3g.

4.1 - NORMAL CASE

In this case, the estimator is initialized with errors of 80m in
position and 0,6 m/s in velocity. This corresponds to a situation where
a good a priori estimate of the orbit is available as a result of
preliminary orbit determination. Figures 1 and 2 show the results obtained
with the use of the Direct Correction with coefficients Cp =4.0, Cy = 10.0
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Figures 3 and 4 show the application of the Restoration Correction to
the same problem. Coefficients were chosen as one among the values 30.0,
1.0 and 0, for Cp; and as one among the values 3.0, 4.0 and 1.0 for Cy
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Automatic correction.

The analysis of Figures 2 to 7 shows that one can attain good results
using any of the correction techniques, since convergence to values close
to the true orbit occurs for the three methods. Best performance is achieved
using Automatic Correction, as expected, although this is the most time
consuming of the proposed techniques (Fleury, 1985). Another important
feature which can be extracted comparing Figures 1 and 2 with Figures 3
and 4 is that an improvement in position convergence is obtained when

Restoration is used instead of Direct Correction.

4.2 - CRITICAL CASE

In this case, the estimator is
position and 10 m/s in velocity. Th
the initial error are larger than

initialized with errors of 1000m in
is corresponds to a situation where
the usual initial errors obtained in

the preliminary orbit determination,.
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The results obtained with the Direct Correction technigue are shown
in Figures 7, 8, 9 and 10
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Figures 11, 12, 13 and 14 present the results accomplished with the
proposed procedure aided by the Automatic Correction technique.
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The analysis of Figures 7 to 14 shows very good results for the
Automatic Correction and a satisfactory convergence with the use of the
Direct Correction. In this last case, the 1000m and 10 m/s initial errors
are reduced to approximately 30 m and 0,4 m/s. Although the final errors
are reasonably small, the time interval for convergence is quite long.
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Notice also that the estimated errors in the transient phase of convergence
are very optimistic when compared to the real ones. These characteristics
show that there are still further efforts to be done in this Direct
Correction technique to reach a better performance.

On the other hand, results obtained with the Automatic Correction
scheme are comparable to results presented by other techniques usually
employed in nonlinear system estimation such as the Extended Kalman Filter
aided by Model Compensation Technique (e.g. Kuga, 1982) .Convergence is
very fast and normalized residues are mantained between the limites of
Y o during all time propagation.

5. CONCLUSIONS

A new approach to state estimation of nonlinear systems has been
presented, where the concept of duality was explored to transform the
estimation problem into one of determining a virtual control. As indicat
ed by the tests done in this exploratory phase, it is expected to be a
valid alternative for the case where a great lack of knowledge in the
dynamics exists, but a good level of information is locally provided
by the observations,

In this work, one only started to explore the possibilites opened
by the virtual nature of control in Equation (13). Presently, efforts
are being done to further explore these possibilities, mostly in terms
of the structure of the virtual control u(t) and of the structure of
G(t), seeking for other forms of automatic and adaptive generation of
this matrix. Besides this, one is also paying efforts in trying to tune
the filter with constant levels of noise to avoid extra efforts
imposed by adaptive estimation of these noises.
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APPENDIX - ADAPTIVE STATE NOISE ESTIMATION: PSEUDOOBSERVATION EQUATION

As seen in the text, to estimate the diagonal elements of Q(k), one
imposes consistency between the observation residues and their statistics
(Jazwinski, 1969). This corresponds to impose that the diagonal elements
of Q(k) must assume values that maximize the probability of occurrence
of the true residue of each observation {Rios Neto and Kuga, 1982). To
understand the resulting procedure, particularly the pseudoobservation
equation, the key steps are reproduced in this Appendix.

The observation residue r(k+1|k) is defined asin Equation (31) by:

rlkat k) =yl ) - Vi ) = vit,) - eary *(bpy) (A.1)

and the true residue (Equation 32) by:
r (k+T[K) = rlke]k) - Yy - (A.2)

Under the hypothesis of having normal probability distributions the
criterion of statistical consistence is realized by imposing:

(r (ke1 [k = E [r2 (ke )1, (A.3)

where the subindex o is to mean to occurred value of rv(k+1]k). Equation
(A.3) is the condition to maximize the probability of occurence of the

value (rv(k+1|k))0. Using Equation {A.2) and Equation (8) of Section 2 in
both sides of Equation (A.3), there results after some algebraic manipula

tions?

(re(ket[k) = 2 rlke1]k) v(ty ) + valty 4 h -

T

T _ T T
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+
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Veet = ~2(r(k+1[k))c v(tk+1) + Vz(tk+1) - Ry (A.5)
Then

E[v'k+1] =0, (A.6)

+ ZR2

EL(v', )20 = 4(r2(k+1[k))_ R Eop (A.7)

k+1

where (r(k+1|k))C is the calculated value, corresponding to the occured
value of the random variable r(k+t|k).

With this definition and using the fact that Q(k)} is a diagonal matrix,

it is reasonable to adopt, from Equation (A4), the Pseudoobservation
equation in the form:

y'(ty )

H' (ke1) g+ V' o (A.8)

where

y'(t ) = (r2(k+1]k))C + R{k+1) - H_, oty 4ot ) P(k|k).

T( HT

Pt o B Hepo (A.9)

n 2

n n
Hi(kel) = D(igy H3.731025 (GZ) Wi3 732) 5 .oos (TG Yim)2], (A.10)

J

and 9 = {qk1""’ qkm} is the m x 1 vector which contains the parameters
to be estimated.

To estimate the vector A > the following algorithm is implemented:
- Prediction or propagation phase
qlk+1]k) = q(k|k), (A.11)
PAk+1]k) = PAk|k) + WI(k]K), (A.12)
where Wq(k|k) is a diagonal matrix of small constants which is added to

Pk|k) to guarantee that PI(k+1|k) is not smaller than the computer
numerical zero,



- Filtering phase: folTows the same steps of the linear Kalman
Filter (e.q. Kuga, 1982; Maybeck, 1979).



