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Abstract. Fixed point theorems have been an important tool used by mathematicians
in the study of the existence of a solution to nonlinear differential equations,
and nonlinear operator equations in general, since the beginning of the century.
In the last seven years we have seen the appearance of some papers which extended
the basic idea of this tool to solve problems of control, state estimation and
parameter identification of nonlinear systems. The present paper discuss the
several fixed point techniques used in control of nonlinear systems in papers
already published on this subject. These techniques consider a space of functions
U as the set of admissible functions. Some new techniques which allow cases where
the set of admissible functions uad is a bounded, closed and convex subset of

are also presented here. The semigroup approach is used so that distributed
parameter systems are considered. A brief discussion on the various types of
fixed point theorems are given, as well as some references on this subject.

INTRODUCTION
In this paper we consider semilinear systems of the type
-2 =Az + Nz + Bu, 2z2(0) = z,, (1}

where A is a linear operator on an appropriate Banach space 7 (the state space),
N a nonlinear operator, B a linear operator from an input space U to Z, and uel
the control (U being a space of functions from the interval [0,T] to the input
space U of the system). .

It is assumed that the dynamics of the linearized system
z = Az, z{(0)=2z,, - (2)

can be described in terms of a strongly continuous semigroup S(t)onz,sothat the
above formulation includes distributed parameter systems and delay systems, as
well as Tumped parameter systems,

The problem of controllability is to find a control u* e U which drives system
(1) from z, at t=0 to a given desired state zy€ Z at t=T. We shail call u* a
wanted control. e



System (1) may be derived from the Tinearization of a system described by a
nonlinear evolution equation such as

i = f(Z,U,t), Z(O) = Zg.

In fact this is shown in: Carmichael, Pritchard and Quinn (1980); Magnusson,
Pritchard and Quinn (1981) and Felippe De Souza (1983c).

Equation (1) is to be interpreted in the mild sense

z(t)

S(t)z, + [ S(t-1)Nz(z)dr + [ S(t-1)Bu(x)dr, (3)

z(0) = z,.

We shall discuss the fixed point technigues used in control of nonlinear
distributed parameter systems in papers already published on this subject, as well
as to bring some new techniques. In order to draw comparisons we shall try to
maintain the notation introduced here, even when results are quoted from papers
which adopt different terminology.

EXAMPLES

In this section, the nonlinear control problem (1) is illustrated with two examples
of systems described by partial differential equations.

Nonlinear Parabolic System

Consider the following equation which describes the control of the flux of
neutrons in a nuclear reactor {p. 95 of Henry, 1981}

2
%5 = k %ié + AZ - nzZ? + u,

with boundary and initial conditions
ZX(D,t) = Zx(ﬁ’t) = 0: Z(X:D) = Zg(x))
where k, X, n > 0.

This system can be expressed in the form (1) by setting 7=12(0,2), A the linear
operator on L2(0,8)

A=k 4l
SN oxE A

. 9%Z 97 _ _
D(A) = {z e 12(0,2): ~7 © Lz2{0,%), =" 0 at x = O,R},

U=12, B =1 (identity on Z) and N the nonlinearity
Nz = -nz2.

It can be shown (Curtain and Pritchard, 1978) that A generates the strongly
continuous semigroup S(t) on L2(0,%) given by

w  A+(n-1)27m2k
e ¢n <z,¢n>,



Nonlinear Hyperbolic System

Consider the following nonlinear wave equation which appears in quantum mechanics
(Lions, 1969) ,

22w ow  d%w
5EF + Y 5t o - W

with boundary conditions
w(0,t) = w(g,t) = 0,

and initial conditions
w(x,0) = w(x,0) = 0,

where v € R and p-eﬁR+.

Set w'=w=29w/3t and A the linear opérator on L2(0,%) |
A = - g_;? D(A) = H2(0,2) N Hy(0,8),

wherﬁ Lz; H2 and H; denote Lebesgue and Scbolev spaces on {0,%2) as usual (Lions,
1969).

Now this system can be'written in the form (1) with z, z,, A, N,and the state
space Z chosen as follows . - '

W

zZ = s Zy = »

w' Wo)
[w Yo 17[\:} ) ,

A = 3 e
whioo [-A yIg W B
y - I

) 0
N = s
w'l o el

Az

Nz

and
Z = D(AM2) x L2(0,2) = H}(0,2) x L2(0,8).
So, the topology on Z is given by the norm
P2 2 2
1 = Wl + bl :
Z Ho(0,2) 12(0,2)

A generates a strongly continuous semigroup on Z. This is shown on page 24 of
Curtain and Pritchard (1978).

3

FIXED POINT THEOREMS

Fixed point theorems have been used since the beginning of the century to show
Jocal existence theorems for differential equations. Recently, several papers
have been published using fixed point theorems to provide existence of the
solutions tothe problems of controllability and state estimation (Pritchard,
1982; Felippe De Souza, 1986). These papers usually provide mappings ¢ or F
defined on some space X of functions from [0,T] to Z (e.g., X= C(0,T;Z) or

X=1P(0,T;Z) for some p21 etc.). The solutions to the problems of nonlinear



controllability and state estimation are obtained via the fixed points of such
mappings.

So, existence of a solution to the problem of nontinear controllability or
state estimation is transformed into existence of .fixed points of these mappings.

Types of Fixed Point Theorems

The papers referred to above used fixed point thecrems of contractive type,
topological type or contractive type with perturbations.

Contractive type. A classical example of a contractive type fixed point theorem
1S the Banach contraction principle (Banach, 1922). Other fixed point theorems
of this type may be found in Belluce and Kirk (1969) or Nashed and Wong {1969),
However, the latter may neither provide an iterative procedure for reaching the
fixed point nor guarantee uniqueness of such fixed point, two things which are
peculiar to Banach's result.

Topological fixed points. Among the several topological fixed point theorems, we
vefer to Brouwer's fixed point theorems (Dunford and Schwartz, 1963) and Schauder
fixed point theorem (Leray and Schauder, 1934).

Contractive type with perturbat1ons. These are mappings F of the type

F=F +F,,

where F, is a contractive typé'(such as a contraction) and F, is either compact
or completely continuous. Among the numerous more. recent papers which develop
fixed point theorems of this type,we mention Nussbaum {1969), Belluce and Kirk
(1969) and Petryshyn {1973).

CONTROL PROBLEM )

Let X denote the space of the tra3ector1es (e.g., X=C{0,T;Z) or X= LP(0,T;2) for
some px 1 etc.) and L(t) be the linear operator defined on X=X for each te [0,T]

by
LE)x(-) = 5 s(t-s)x(s)ds.
So, equation (3), the mild form of (1), can be rewritten as
2(+) = S(*)zo + LOINZ(+) + L(-)Bu, 2(0) = zy. (4)
Now- let G:U » Z be the operator
= J1 S(T-s5)Bu(s)ds = L(T)By

The Mappings ¢

Here we assume that the initial state is z=0 (the origin). Set X = kernel (G)_ and
G:U/¥X - Z defined by G[u]=Gu for all equivalence classes [ule u/¥ so that G
always exists.




Suppose now that we know an actual trajectory z*(t), te [0,T] which takes system
(1) from the initial state z,=0 (the origin) to the desired state z4 on the
interval [0,T]. Thus, it is easy to verify that u*e U defined by

u* = E Mz - f] S(T-pINz*(p)de] "
5

il

ﬁ'ltzd - L{TINz*(-)]
is a wanted controi which steers system (1) from the origin to z, on [0,T].

So, the wanted control u* as given in (5) depends on the knowledge of the actual
trajectory z*(-) of the system. Substituting z(-) and u in (4) by
z*(+) and u* given in (5), respectively, we obtain

z%(+) = L(+)BG  [z4 - L{TINz*(+)] + L(-INz*(-),

which is an expression of the actual trajectory depending on itself. Clearly,
z*(+) is a fixed point of the mapping ¢:X - X defined by

9z(+) = L(-)BG [z - L(TIN2(+)] + L{-)Nz(-). (6)

That is, z*(-*) =d(z*(+)). The problem of controllability of system (1) (in other
words, the problem of the existence of a wanted control u*) is transformed into the
existence of a Tixed point for ¢. Moreover, the problem of finding a wanted
control u* is transformed into finding a fixed point for ¢. This approach was
used in Magnusson, Pritchard and Quinn {1981); Carmichael, Pritchard and Quinn
(1981);and Pritchard (1981). In fact, Magausson, Pritchard and Quinn (1981) and
Carmichael, Pritchard and Quinn {1981), using a contraction mapping theorem arc

a fixed point theorem for mappings of contractive type with perturbaticns,
respectively, have shown that the diffusion process

3z a2z (?)

=t - 5@ T Nz + u,

with the nonlinearity Nz = z?, is controliable to any z4 within a ball of radius r
in Z (r being dependent on the norm on X of S${-)z1, z1 & Z)}.

Actually, the work of Ichiwaka and Pritchard (1979) was one of the first to use
a similar approach to solve the existence and uniqueness of evolution equations.
Mappings similar to ¢ in (6) were used in Carmichael and Quinn (1982) to solve
an optimal control problem and also in Kassara and E1 Jai (1983) in an attempt
to construct an algorithm for solving the control problem.

Felippe De Souza (1982, 1983c) showed that the mapping ¢ in (6) does not provide
necessary conditions for us to obtain the wanted controls u* which drive the
system from z,=10 tozd in the interval [0,T1. That is, there may be wanted

controls u* which can never be found via the fixed points z*(:) of ¢.



Using the Generalized Inverse of G

First take z,=0 agaig. Pritchard (1982) found that the mapping ¢_of (6) could be
simplified by using G' {the generalized inverse of G) instead of G !, as long as
Range (G) 1is closed in Z. Moreover, Pritchard (1982) assumed that U and/or Z
could be adjusted in order to the operator G to have closed range in Z. Later
Felippe De Souza (1983a, Chapter 5 of 1983c) showed that this adjustment of u and
Z is always possible. Furthermore, Felippe De Souza (1983b) presented an iterative
procedure for this adjustment to be done.

Felippe De Souza and Pritchard (1985) and Felippe De Souza (1985) extended this
result to cases where the initial stateisz, = 0. The mapping ¢ then becomes

¢z(-) = S{+)zy + L{INz(-) + L(')BG+[zd - S(T)z, - L{TINz(+)]
and, if z*(+) is a fixed point of ¢, then a wanted control u*e ( is given by

u* = 670z - S(T)zy - L(TINZ*(-)].
Felippe De Souza and Pritchard (1985) also showed that the diffusion process
(7) with nonlinearities Nz such as z"“, zi, 2z, etc. can be controlled to any zy
within a ball of radius r (r being'dependent on the norm on X of $(-)z,, z,eZ).
The mapping ¢ with G'-was an improvement in the simplicity but, on the other

hand, it neither provides  necessary nor sufficient conditions for us to
obtain the wanted controls u*, Actually, a fixed point z*(+) of ¢ must satisfy

{zd - L{T)Nz*(+)] € Range (G)

in order to u* given by (5), be a wanted control for system (i). This condition
was called "check of consistency" in Pritchard (1982). Check of consistency has
also been used in Felippe De Souza and Pritchard (1985) with similar mappings ¢
for which sufficient conditions for us to obtain a wanted control u* dces not
hold either.

A New Approach

A more sophisticated approach to solve the control problem for system (1} was
introduced in Felippe De Souza -(1982). This new approach involved a pair
Z= (z(-),zf) consisting of the trajectory z(-)e X and the final state zc€ Z.

Instead of ¢:X - X, the mapping used was F:M -~ M; M being the cross product
between X and Z.

Assume that the state space Z is a Hilbert space and the trajectory z(-) on
[0,T] lies in X '

X = L2(0,T;Z).



Define the Hilbert space
M=Xx1Z
with the inner-product given by
Z(') Z'(') _ . 1. '
[ : ][ s ]>M-<z( )12 () + Zp2p.
Define the operators S:Z ~ M and L:X +~ M by

SZf = (S(')Zf: S(T)Zf):
Lx(+) = (LC)x(+), L(Tx(+)).
Now system (4) can be represented in the compact form
z = Sz, + LNz(*} + LBu, z{(0) = z,. ' (8)

It is assumed that Range (LB) is closed in M. If this is not the case for a
particular choice (U,Z) of space of input functions U and state space Z, it is
necessary to reframe the system in a restricted state space Z' and/or an enlarged
space of input functions U' such that the assumption will hold for the choice
(U',2'). Here again the work of Felippe De Souza {1983a, 1983b, 1983c} on the
adjustment of the topology of the spaces can be applied.

The mapping F:M = M used in Felippe De Souza (1982) was
F(z) = v + (I - P)LNz(+) + Pz - LBGTzf, (9)

where y = [LBGTZd + (1-P)Sz,]eM is a fixed element, I is the identity on M and P
is any continuous projection onto Range (LB).

Felippe De Souza (1982) showed that if there is a wanted control u* in U which
drives the system from z, at t=0 to the desired state zZy at t=T, then u* can

be obtained via the fixed points of F. In other words, F was the first mapping
with necessary conditions for us to obtain the wanted controls u*. This was
possible only because of the approach of the pair (z(-),zf) consisting of the
trajectory and final state.

Also note that F in (9) is in fact a family of mappings, since P is any continuous
projections onto Range (LB). Several examples of continuous projections onto Range
(LB) are shown in Chapter 4 of Felippe De Souza (1983c). It 1is also shown that
when z, =0 and for a particular projection P=1, where Ii=1, + 1, was defined in
Felippe De Souza (1982), F in (9} becomes

F(z) = (¢2(+),(¢2(+))(T)) + T, (z ~ LNz(-)),

where ¢ is as before. That is, ¢ can be regarded as the particular case of F when
P=1,. Also, M,(z-LNz{(+)) is the missing term in ¢ which gives necessity to F.



Later, Felippe De Souza (1983c, 1984) developed mappings F:M >~ M which provide
necessary and sufficient conditions. That is: if z* is a fixed point of F, then
we can obtain a wanted control u*, and if u* is a wanted control, then it can be
obtained using a fixed point z* of F.

Actually, Felippe De Souza (1983c)showed that such mappings {with necessary and
sufficient conditions) could not be obtained without considering the approach of
the space M (i.e., the approach of the pair (z(-),zf) consisting of the trajectory
and final state).

New Results

We shall now present two new results {Theorem 1 and 2) which illustrate this new
class of mappings F which provide necessary and sufficient conditions, Theorem t is
in fact a more general version of a result shown in Felippe De Souza (1984).
Theorem 2 is only being introduced here and admits a set of admissible controls

Uyqg = Us A case which has been ignored by the authors so far.

Let P be as before {i.e., any continuous projection onto Range (LB}, £:M + M be
the mapping ‘

g(z) = z - Sz, - LNz(+),
x be any fixed element of M which satisfies
x € Range (LB) and X =10,
and q be any functional on Z which satisfies
q(zf) =0 if and only if ze = z4. (10}
Several examples of functionals q are given in Felippe De Souza (1983c).
Theorem 1. The control u* € U given by
u* = (LB)Te(z) (11)

drives system (1) from z, at t=0 to z, at t=T if and only if z*= (z*(‘),z?)er4
is a fixed point of the mapping F:M -+ M

F(z) = Sz, + LNz(-) + Pg(z) + q(zf)i (12)
for all z = (z(+),z;) e M. ] O

Proof. Necessity: If u* given by (11) drives system (1) from z, at t=0 to Z4
at t=T,then, using (8),

£(z*) = z* - Sz, - LNz*(-) = LBu*
and therefore £(z*) ¢ Range (LB}, which implies that
Pz(z*) = £(z%), ‘ (13)

and z*= (z*(*)ﬁzf*) is the pair consisting of the actual trajectory z*(:)
and the final state



2¥(T) = z¥ = z,. (14)
Then q(z?) = 0. Now, using (13),

F(z*) = Sz, + LNz*(-) + £(z*) = z*,
Sufficiency: If z* = F(z*), then

2% = Sz, + LNz*{(+} + Pe(z*) + q(zg)i, (15)
and hence
£(z*) = 2% - 8zq - LNz* = Pr(z*) + q(z})X. (16)

But, since both PE(z*) and q(z?)i lie in Range (LB},we have that z{z*)
also lies in Range {LB) and therefore £(z*) = Pz(z*). So, using (16),

a(zf)% = 0. (17)

Hence, since x =0, Z$==Zd' Equations (15) and (17) imply that (z*(-),z?)

satisfies the dynamic equation (8) with u* given by {11}. So, 7
2% = (z*(-),z;) is again the pair consisting of the actual trajectory z*(-}

and the final state z*(T) = z} and the control u* drives system (1) from z,

at t=0 to Zy atﬁt=ff. 0
Now suppose that uad’ the set of admissible controls, is either
U4 =u (the space of all input functions), (13}

(which are the cases admitted so far), or
uad is a bounded, closed and convex subset of U.

Let now P be any continuous projection onto LB(uad). Several examples of such
projections are given in Chapter 4 of Felippe De Souza (1983c).

Also define the mapping g :M - M by
tylz) = (0, z, - z4) for all z = (z(-),z;) € M.
Theorem 2. There exists a control u* e U, given by
u* = (LB)TE(Z*(-),zd) ' (19)

which drives system (1} from z, at t=0 to zy at t=T if and only if there exists
z* = (z*(-),zl) € M which is a fixed point of F:M + M

71
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;d(z) + Sz, + LNz(-} + Pg(z{'),zd} (20)
for all z = (z(-),z,) e M, N

Proof. MNecessity: If there exists u*e U.q given by (19), then, using (8}, we can
show, similarly to Theorem 1, that g(z*(-),zd)e LB(uad) and hence

Pa(z*('),zd) = g(z*('),zd).



Now since
E(z*(+),z,) = &(2*%) - g4(2%), (21)
F(z*) = £(z*) + Sz, + LNz* = z*,
Sufficiency: If z* = F(z*), then

Z* = ;d(z*) + Sz, + LNz*(-) + Pg(zﬂ-),zd).

Hence,
E(Z*) - Ed = P'E(Z*(')szd)a

and thus, using (21) again, E(z*(-),zd) = Pg(z*(-),zd) which implies that
E&*(-),zd)e LB(U_4)- So, (z*(-),zd) satisfies (8) with u* given by (19)
and is the pair trajectory-final state. So u* drives system (1} from z, at
t=0tqzdatt=T. D
Remarks .
Note that a fixed point z*-= (z*(-),z?) of F 1p (12) always satisfies (14), namely
z*(T) = 23 = 7.
This is not necessarily the case for F in (20).

The mapping F given in (12) for Theorem 1 cannot be used for the case U ad 7 =,
This is actually shown in Felippe De Souza (1983c).

Conclusions

The main contribution of the present paper is the extension of the fixed point
techniques to cases where the set of admissible functions Uad is not the whole

space of input functions U, However, the history of the previous work done on this
subject and the brief discussion on the various fixed point theorems presented
here are also valuable contributions.
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